
1/39

2019 Korea-EU Researcher Exchange Program

A Theory of RPC Calculi for Client-Server Model

Kwanghoon Choi

Dept. of Electronics and Computer Engineering
Chonnam National University

Republic of Korea

July 2019

(Cowork with Byeong-Mo Chang at Sookmyung Women’s University, Korea)

2/39

Introduction

Tierless programming languages for client-server model such as
Web to address the client-server dichotomy

I To allow to intersperse client and server expressions with
seamless communication in a unique PL

I To support an automatic slicing of the program into two parts
which run on the server and on the client, respectively

3/39

Introduction

The RPC calculus, the simplest semantics foundation for the
tierless programming languages (Cooper&Wadler, 2009)
I Uses the syntax of λ-application for remote procedure calls

mainc = authenticate ()

authenticate = λs x.
let creds = getCredentials "Enter name:passwd > " in

if creds == "ezra:opensesame"
then "the secret document" else "Access denied"

getCredentials = λc prompt. (print promt; read)

4/39

Problem

The other tierless calculi (ML5, Hop, Ur/Web, Eliom, etc.) support
asymmetric communication, or they are for peer-to-peer model.

Only the RPC calculus supports symmetric communication
programming for client-server model.

However, in the original (untyped) RPC calculus,

I The semantics foundation for the stateless server style, not for
the stateful server style

I The complicate compilation rules due to the absence of
location information in lambda applications

5/39

In this research

A theory of RPC calculi for client-server model

I A typed version of the RPC calculus that can account for
remote procedure calls in type level

I Type-directed slicing compilations in the stateless style, the
stateful style, and the mixed style

I Establishment of type soundness of the locative type system
and the correctness of the compilations

6/39

Part I: A typed RPC calculus

A locative type system for the RPC calculus that identifies remote
procedure calls statically

7/39

The RPC calculus

A call-by-value λ-calculus with location annotated λ-abstractions
I λax .N : λ-abstraction that must run at location a

Location a, b ::= c | s

Term L,M,N ::= V | L M
Value V ,W ::= x | λax .N

Evaluation
(Value)

V ⇓a V

L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V
(Beta)

L M ⇓a V

8/39

The RPC calculus
An example of symmetric communication flow between the client
and the server:

9/39

A locative type system for the RPC calculus

Every λ-abstraction of type τ a−→ τ ′ runs at location a.

Type τ ::= base | τ
a−→ τ

I (λsf . (λsx .x) (f M)) (λcy . (λsz .z) y)

Well-typed where f : τ1
c−→ τ2

I (λcf . f M) (if · · · then λcx.M1 else λsy.M2)

Ill-typed because neither f : τ1
c−→ τ2 nor f : τ1

s−→ τ2

10/39

A locative type system for the RPC calculus

A typing judgment, ΓBa M : τ , says:
I A term M at location a has type τ under a type environment Γ

Key idea: A refinement of the lambda application typing w.r.t. the
combinations of location a and location b

ΓBa L : τ
b−→ τ ′ ΓBa M : τ

ΓBa L M : τ ′

cf.
L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V

(Beta)
L M ⇓a V

11/39

A locative type system for the RPC calculus

The use of (T-App), (T-Req), and (T-Call) says ‘L M’ is a local
procedure call, a c-to-s RPC, and a s-to-c RPC, respectively.

Γ(x) = τ
(T-Var)

ΓBa x : τ

Γ{x : τ}Bb M : τ ′
(T-Lam)

ΓBa λ
bx .M : τ

b−→ τ ′

ΓBa L : τ
a−→ τ ′ ΓBa M : τ

(T-App)
ΓBa L M : τ ′

ΓBc L : τ
s−→ τ ′ ΓBc M : τ

(T-Req)
ΓBc L M : τ ′

ΓBs L : τ
c−→ τ ′ ΓBs M : τ

(T-Call)
ΓBs L M : τ ′

12/39

A locative type system for the RPC calculus

A example of a typing derivation where f : base
c−→ base,

(λsf . (λsx .x) s3(f c1c)) s1(λcy . (λsz .z) s2y)

using the following notation:

I Notation: L b M for Γ Ba L : τ
b−→ τ ′ Γ Ba M : τ

Γ Ba L M : τ ′

cf.

13/39

Properties of the locative type system

Type soundness for the RPC calculus
I If ΓBa M : τ and M ⇓a V , then ΓBa V : τ .

Corollary: Every remote procedure call identified statically will never
change to a local procedure call under evaluation.

14/39

Properties of the locative type system

Typeability for the RPC calculus
I Every simply typed term with arbitrary location annotations is

(or can be transformed to be) typed under our type system.

I (λaf) M is ill-typed where f : τ
c−→ τ ′, M : τ

s−→ τ ′, but
(λaf) (λcx .M x) is well-typed where (λcx .M x) : τ

c−→ τ ′.

[[M]]τ1 τ2 : Location transformation of a term M of type τ1 into τ2

[[M]]τ τ = M

[[M]]τ1
a−→τ2 τ3

b−→τ4 = λbx .[[M [[x]]τ3 τ1]]τ2 τ4

15/39

Part II: Slicing with state-encoding calculi

A server stateless implementation for scalability, leaving no states
on the server after each cycle of request-response
I λrpc ⇒ λencrpc ⇒ λenccs

cf. (Cooper&Wadler, 2009)

16/39

Basic idea
Collapsing arbitrarily deep symmetric communication into a series
of request-response leaving no states on the server

17/39

A state-encoding RPC calculus λenc
rpc

λrpc ⇒ λencrpc ⇒ λenccs

In λencrpc , remote procedure calls explicitly in term-level as:
Term M ::= V | let x = M in M

| Vf (W) | req(Vf ,W) | call(Vf ,W)

In the compilation of λrpc into λencrpc ,
I A typing derivation directed compilation

I Continuation-passing style (CPS) for encoding the rest of the
server evaluation right after each client function call

18/39

Compilation of λrpc-typing derivations into λenc
rpc

Direct style compilation for the client part, and CPS compilation
for the server part

Client: C [[Mrpc]] = Menc
rpc

C [[x]] = x
C [[λcx .M]] = λcx .C [[M]]
C [[λsx .M]] = λs(x , k).S [[M]] k
C [[L cM]] = let f = C [[L]] in cf. (T-App)

let x = C [[M]] in
let r = f (x) in r

C [[L sM]] = let f = C [[L]] in cf. (T-Req)
let x = C [[M]] in
let r = req(f , (x , λsy .y)) in r

19/39

Compilation of λrpc-typing derivations into λenc
rpc

Direct style compilation for the client part, and CPS compilation
for the server part

Server: S [[Mrpc]] K = Menc
rpc

S [[x]] K = K (x)
S [[λcx .M]] K = K (λcx .C [[M]])
S [[λsx .M]] K = K (λs(x , k).S [[M]] k)
S [[L cM]] K = S [[L]] (λsf . cf. (T-Call)

S [[M]] (λsx .
call(λcx .let y = f (x) in req(K , y), x)))

S [[L sM]] K = S [[L]] (λsf . cf. (T-App)
S [[M]] (λsx .
f (x ,K)))

⇒ Note call(-,-) is always in the tail position.

20/39

The semantics of λenc
rpc

Configuration (Conf): Client | Server
I Client : either a term M or a client context Π

I Server : either a term M or a server context ∆

Client context Π ::= ctx x M (≈ let x = [] in M)

Server context ∆ ::= ε

Evaluation step: Conf ⇒enc Conf ′

21/39

The semantics of λenc
rpc

A session is either (Req)·(Call) or (Req)·(Reply), which corresponds
to a single cycle of request-response on the clinet-server model.

Client:
(AppC) let y = (λcx̄ .M0)(W) in M | ε ⇒enc let y = M0{W /x̄} in M | ε
(Req)∗ let x = req(λsx̄ .M0,W) in M | ε ⇒enc ctx x M | (λsx̄ .M0)(W)

(ValC) let x = V in M | ε ⇒enc M{V /x} | ε
(LetC) let x = (let y = M1 in M2) in M | ε

⇒enc let y = M1 in (let x = M2 in M) | ε

Server:
(AppS) Π | (λsx̄ .M0)(W) ⇒enc Π | M0{W /x̄}
(Call)∗ ctx x M | call(λcx̄ .M0,W) ⇒enc let x = (λcx̄ .M0)(W) in M | ε
(Reply)∗ ctx x M | V ⇒enc let x = V in M | ε

22/39

Slicing into the client and server parts
λrpc ⇒ λencrpc ⇒ λenccs

The slicing compilation of λencrpc into λenccs (≈ closure conversion)

CC [[M]] = m

A state-encoding CS calculus λenccs with closure
Value v ,w ::= x | clo(F , v̄)
Term m ::= · · ·
Function store φa ::= { · · · , F = z̄λax̄ .m, · · · }

The semantics of λenccs : Conf1 ⇒enc Conf2

Correctness of the slicing compilation
I If M ⇓c V , then CC [[C [[M]]]] | ε⇒enc∗ CC [[C [[V]]]] | ε.

23/39

Compilation of the RPC term

Example: (λsf . (λsx .x) s3(f c1c)) s1(λcy . (λsz .z) s2y)

φc : main = let r3 = reqs1(clo(g7, {}), clo(g10, {}), clo(g11, {})) in r3
g2 = {f7, f5, k4} λcz9. let r10 = f7 z9 in reqc1(clo(g1, {f5, k4}, r10)
g10 = {} λcy . let r14 = reqs2(clo(g8, {}), y , clo(g9, {})) in r14

φs : g1 = {f5, k4} λsx6. f5 (x6, k4)
g3 = {f7, f5, k4} λsx8. callc1(clo(g2, {f7, f5, k4}), x8)
g4 = {f5, k4} λsf7. clo(g3, {f7, f5, k4}) c
g5 = {k4, f } λsf5. clo(g4, {f5, k4})) f
g6 = {} λsx , k11. k11 x
g7 = {} λsf , k4. clo(g5, {k4, f }) s3 (clo(g6, {}))
g8 = {} λsz , k15. k15 z
g9 = {} λsx16. x16
g11 = {} λsx17. x17

24/39

Part III: Slicing with stateful calculi

A stateful implementation where some states may persist on the
server during multiple subsequents cycles of request-response
I λrpc ⇒ λstaterpc ⇒ λstatecs

25/39

Motivation

In the following example, the cursor to a query result should persist
on the server before and after the client function invocation:

For example,

λsquery . let cursor = executeOnDatabase(query) in
let name = getNameFromRecord(cursor) in
let r = fclient(name) in
let cursor = nextRecord(cursor) in · · ·

26/39

Comparison with the state-encoding calculi

27/39

A stateful RPC calculus λstate
rpc

λrpc ⇒ λstaterpc ⇒ λstatecs

In λstaterpc , remote procedure calls explicitly in term-level as:

Term M ::= V | let x = M in M

| Vf (W) | req(Vf ,W) | call(Vf ,W) | ret(V)

In the stateful semantics, a server stack ∆ replaces K as:
I “let x = ret(V) in M | ∆” in the stateful style instead of

“let x = req(K ,V) in M | ε” in the stateless style

In the compilation of λrpc into λstaterpc ,
I A typing derivation directed compilation

I Direct style compilation both for the client and the server

28/39

Compilation of λrpc-typing derivations into λstate
rpc

Direct style compilation both for the client part and the server part

Client: C [[Mrpc]] = Mstate
rpc

C [[x]] = x
C [[λcx .M]] = λcx .C [[M]]
C [[λsx .M]] = λsx .S [[M]]
C [[L cM]] = let f = C [[L]] in cf. (T-App)

let x = C [[M]] in
let r = f (x) in r

C [[L sM]] = let f = C [[L]] in cf. (T-Req)
let x = C [[M]] in
let r = req(f , x) in r

29/39

Compilation of λrpc-typing derivations into λstate
rpc

Direct style compilation both for the client part and the server part

Server: S [[Mrpc]] = Mstate
rpc

S [[x]] = x
S [[λcx .M]] = λcx .C [[M]]
S [[λsx .M]] = λsx .S [[M]]
S [[L cM]] = let f = S [[L]] in cf. (T-Call)

let x = S [[M]] in
let r = call(λcx .let y = f (x) in ret(y), x) in r

S [[L sM]] = let f = S [[L]] in cf. (T-App)
let x = S [[M]] in
let r = f (x) in r

⇒ Note call(-,-) can be both in the tail and non-tail positions.

30/39

The semantics of λstate
rpc

Configuration (Conf): Client | Server
I Client : either a term M or a client context Π

I Server : either a term M or a server context stack ∆

Client context Π ::= ctx x M
Server context stack ∆ ::= ε | ctx x M · ∆

cf. ctx x M ≈ let x = [] in M

Evaluation step: Conf ⇒state Conf ′

31/39

The semantics of λstate
rpc

A session is (Req) · {(Call) · (Ret)}zero or more · (Reply), and it may
span multiple cycles of request-response on the client-server model.

Client:
(AppC) let y = (λcx̄ .M0)(W) in M | ∆

⇒state let y = M0{W /x̄} in M | ∆

(Req)∗ let x = req(λsx̄ .M0,W) in M | ∆
⇒state ctx x M | ∆; let r = (λsx̄ .M0)(W) in r

(ValC) let x = V in M | ∆ ⇒state M{V /x} | ∆

(LetC) let x = (let y = M1 in M2) in M | ∆
⇒enc let y = M1 in (let x = M2 in M) | ∆

(Ret)∗ let y = ret(V) in M2 | ctx x M1 ·∆ (cf. Pop)
⇒state ctx y M2 | ∆; let x = V in M1

32/39

The semantics of λstate
rpc

Server:
(AppS) Π | ∆; let y = (λsx̄ .M0)(W) in M

⇒state Π | ∆; let y = M0{W /x̄} in M

(Call)∗ ctx y M2 | ∆; let x = call(λcx̄ .M0,W) in M1 (cf. Push)
⇒state let y = (λcx̄ .M0)(W) in M2 | ctx x M1 ·∆

(Reply)∗ ctx x M | ∆; V ⇒state let x = V in M | ∆

(ValS) Π | ∆; let x = V in M ⇒state Π | ∆; M{V /x}

(LetS) Π | ∆; let x = (let y = M1 in M2) in M
⇒state Π | ∆; let y = M1 in (let x = M2 in M)

33/39

Slicing into the client and server parts

λrpc ⇒ λstaterpc ⇒ λstatecs

The slicing compilation of λstaterpc into λstatecs (≈ closure conversion)

CC [[M]] = m

A stateful CS calculus λstatecs

Value v ,w ::= x | clo(F , v̄)
Term m ::= · · ·
Function store φa ::= { · · · , F = z̄λax̄ .m, · · · }

The semantics of λstatecs : Conf1 ⇒state Conf2

Correctness of the slicing compilation
I If M ⇓c V , then CC [[C [[M]]]] | ε⇒state∗ CC [[C [[V]]]] | ε.

34/39

Compilation of the RPC term

Example: (λsf . (λsx .x) s3(f c1c)) s1(λcy . (λsz .z) s2y)

φc : main = let r3 = reqs1(clo(g3, {}), clo(g5, {})) in r3
g2 = {f7} λcz10. let y9 = f7 z10 in ret(y9)
g5 = {} λcy . let r14 = reqs2(clo(g4, {}), y) in r14

φs : g1 = {} λsx . x
g3 = {} λsf . let x5 = (let r11 = callc1(clo(g2, {f }), c) in r11) in

let r6 = clo(g1, {}) s3 x5 in r6
g4 = {} λsz . z

35/39

Discussion

An extended semantics for the session management

I client
session #

| server or client
nothing

| server

A mixed strategy
I employs the state-encoding calculi by default
I but switches to the use of the stateful calculi when necessary,
I separating the state-encoding part from the stateful part by

the notion of monadic encapsulation of states
(Launchbuary & Peyton Jones, 1994; Timany et al., 2017)

36/39

Related Work

Comparison with the original untyped RPC calculus
I Statically identified remote procedure calls
I A foundation for the stateful implementation in Links

37/39

Related Work

In the (untyped) RPC calculus, the automatic slicing into the client
and the server part into the CS (client-server) calculus:

I CPS conversion for stateless server

I Trampolined style for handling calling back from the server
⇒ An HTTP req-resp based asymmetric implementation

I Defunctionalisation for client and server closed procedures

38/39

Related Work

Programmer’s view and implementation model
I Symmetric communication vs. asymmetric Communication
I Client-server model vs. peer-to-peer model

Client-server model Peer-to-peer model

Symmetric
communication

Links (Cooper et al, 2007)
RPC (Cooper&Wadler, 2009)
Typed RPC

(Choi&Chang, 2019)

Lambda5
(Murphy VII et al, 2004)

ML5 (Murphy, 2008)
Multi-tier calculus
(Neubauer & Thiemann, 2005)

Asymmetric
communication

Hop
(Serrano & Queinnec, 2010)

Ur/Web (Chlipala, 2015)
Eliom (Radanne, 2017)

n/a

39/39

Conclusion

A typed RPC calculus can statically discerns remote procedure calls
providing type-based slicing with state-encoding and stateful calculi.

Future works
I Location polymorphic functions such as map

: τ → τ ′ vs. τ a−→ τ ′

I A location inference method for locations at applications
: [[M]]Γ1⇒τ1 Γ2⇒τ2 as a generalization of [[M]]τ1 τ2

I Compilation of the two CS calculi into a session-typed calculus
: Effects for communication ϕ ::= τ chan r | r !τ | r?τ | · · ·

