2019 Korea-EU Researcher Exchange Program

A Theory of RPC Calculi for Client-Server Model

Kwanghoon Choi

Dept. of Electronics and Computer Engineering
Chonnam National University
Republic of Korea

July 2019

(Cowork with Byeong-Mo Chang at Sookmyung Women's University, Korea)

Introduction

Tierless programming languages for client-server model such as
Web to address the client-server dichotomy

> To allow to intersperse client and server expressions with
seamless communication in a unique PL

» To support an automatic slicing of the program into two parts
which run on the server and on the client, respectively

Introduction

The RPC calculus, the simplest semantics foundation for the
tierless programming languages (Cooper&Wadler, 2009)

» Uses the syntax of \-application for remote procedure calls

main® = authenticate ()
authenticate = A°x.
let creds = getCredentials "Enter name:passwd > " in
if creds == "ezra:opensesame"

then "the secret document" else "Access denied"

getCredentials = A°prompt. (print promt; read)

Problem
The other tierless calculi (ML5, Hop, Ur/Web, Eliom, etc.) support
asymmetric communication, or they are for peer-to-peer model.

Only the RPC calculus supports symmetric communication
programming for client-server model.

However, in the original (untyped) RPC calculus,

» The semantics foundation for the stateless server style, not for
the stateful server style

» The complicate compilation rules due to the absence of
location information in lambda applications

In this research

A theory of RPC calculi for client-server model

» A typed version of the RPC calculus that can account for
remote procedure calls in type level

> Type-directed slicing compilations in the stateless style, the
stateful style, and the mixed style

» Establishment of type soundness of the locative type system
and the correctness of the compilations

Part I: A typed RPC calculus

A locative type system for the RPC calculus that identifies remote

procedure calls statically

RPC calculi
(single unified term)

CS(Client-Server) calculi
(separate terms)

RPCs identified at type level

Aenc

typed compilation. Tpc

Arp c ed compilation.
(locative type system) A?%‘éfe

compilation. ,

(stateless server)

compilation.

(stateful server)

RPCs identified at term level
age
(stateless server)

state
ACS

(stateful server)

The RPC calculus

A call-by-value A-calculus with location annotated A-abstractions

» M\¥x.N : M-abstraction that must run at location a

Location a,b = ¢ | s
Term LM,N == V | LM
Value vV.w = x| ANx.N
Evaluation

(Value)

Vi,V

LUs AN MU, W N{W/x} |y V
LM,V

(Beta)

The RPC calculus

An example of symmetric communication flow between the client
and the server:
S1

S3
C1 S2

(Af. O5x.2) ()) (KEy. (Fz.2) y)

Client Server Client Server

A locative type system for the RPC calculus

Every A-abstraction of type 7 = 7/ runs at location a.

Type 7 == base | 7357

> (ASF. (ASx.x) (Ff M)) (ACy. (NSz.z) y)

Well-typed where f : 71 =

> (Af.f M) (if --- then *x.M; else A%y.M>)

Ill-typed because neither f : 71 = 7 nor f : 71 — 7

A locative type system for the RPC calculus

A typing judgment, ' >, M : 7, says:

> A term M at location a has type 7 under a type environment [

Key idea: A refinement of the lambda application typing w.r.t. the
combinations of location a and location b

FDQL:TEM" >, M:r
Fr>,LM:7

b
¢ LUa XN MY, W o N{W/x} Yy V e
LM,V

A locative type system for the RPC calculus

The use of (T-App), (T-Req), and (T-Call) says ‘L M' is a local
procedure call, a c-to-s RPC, and a s-to-c RPC, respectively.

M(x) = T M{x:1t}>pM: 7'
(T-Var) L (T-Lam) ,
FEax:r Mo, XM 7 27

ro,l:73 7 T, M:7
Fr>, L M: 7

Tocl:TS 7 TeM:T

T-Req
() F>cL M: 7

Tosl:7S 7 TgM:T
> L M: 7/

(T-Call)

A locative type system for the RPC calculus

A example of a typing derivation where f : base < base,
(AF. (W3x.x) B(f “c)) H(A®y. (N\°z.2) *2y)

using the following notation:

i b .
» Notation: L > M for Bebir—7 TBaM:7
T, LM:7!

cf. S1
S3
C1 S2
A°f. Xx.x) (fe))XY (BPz.z2) y)

Properties of the locative type system

Type soundness for the RPC calculus
> If Tr>, M:7tand M|, V, thenT >,V : 7.

Corollary: Every remote procedure call identified statically will never
change to a local procedure call under evaluation.

Properties of the locative type system

Typeability for the RPC calculus

» Every simply typed term with arbitrary location annotations is
(or can be transformed to be) typed under our type system.

> (Xf...) Mis ill-typed where f : 7 S 7/, M : 7 3 7/, but
(Nf....) (A°x.M x) is well-typed where (A\°x.M x) : 7 5 7.

[M]™72: Location transformation of a term M of type 71 into 7

[M]7" — M

":M]]Tli)Tz s Tgi>7'4 _)\bX.I[M |[X]]T3W7'1]]7'2WT4

Part Il: Slicing with state-encoding calculi

A server stateless implementation for scalability, leaving no states

on the server after each cycle of request-response

enc enc
> Ape =)\,gc = A\
RPC calculi CS(Client-Server) calculi

(single unified term)

(separate terms)

RPCs identified at type level

typed compilation.

Arpc
(locative type system)

enc
Arpc

state
Ar c

compilation.

(stateless server)
typed compilation.

compilation.

(stateful server)

RPCs identified at term level
Aenc

CcS
(stateless server)

state
Acs

(stateful server)

cf. (Cooper&Wadler, 2009)

Basic idea

Collapsing arbitrarily deep symmetric communication into a series
of request-response leaving no states on the server
S1
S3

C1 S2
Af. O5x.0) (fo)) (Ay. K°z.2) y)

Client Server Client Server Client Stateless Server

A state-encoding RPC calculus \¢7¢

rpc

Ape = ADS = AC

rpc

In AZ0E, remote procedure calls explicitly in term-level as:

Term M = V]letx=Min M
| Ve(W) | req(Vs, W) | call(Ve, W)

enc
rpc:

> A typing derivation directed compilation

In the compilation of A,pc into A

» Continuation-passing style (CPS) for encoding the rest of the
server evaluation right after each client function call

Compilation of A,,c-typing derivations into Af<

rpc

Direct style compilation for the client part, and CPS compilation
for the server part

Client: C[Msc]

— MEHC

rpc

Clx]

C[x.M]
Cx.M]
ClL <M]

C[[L sM]

Aex.C[M]

X(x, k).S[M] k

let f = C[L] in cf. (T-App)
let x = C[M] in

let r = f(x)inr

let f = C[L] in cf. (T-Req)
let x = C[M] in

let r = req(f, (x, \°y.y)) in r

Compilation of A,c-typing derivations into A7J¢

Direct style compilation for the client part, and CPS compilation
for the server part

Server: S[Mpc] K = Mg

S[x] K = K(x)
S[AxM] K = K(Ax.C[M])
SIExM] K = K(OS(x, k).S[M] k)
S[L<M] K = S[L] (»sf. cf. (T-Call)
S[M] (Asx.
call(A°x.let y = f(x) in req(K,y), x)))
S[LsM] K = S[L] (A°f. cf. (T-App)
S[M] (Asx.
f(x; K)))

= Note call(-,-) is always in the tail position.

The semantics of A7

Configuration (Conf): Client | Server
» Client : either a term M or a client context I1

» Server : either a term M or a server context A

Client context M == ctxx M (=let x=[]in M)

Server context A = ¢

Evaluation step: Conf =" Conf’

The semantics of A7

A session is either (Req)-(Call) or (Req)-(Reply), which corresponds
to a single cycle of request-response on the clinet-server model.

Client:
(AppC) let y = (A X.Mo)(W)in M| e = lety = M{W/X}inM|e
(Req)* let x = req(Ax.Mp, W) in M | e =" ctx x M | (A%.Mp)(W)
(ValC) letx=VinM]|e =" M{V/x}|e
(LetC) let x =(let y = My in My)in M | ¢

=" let y = My in (let x = Ms in M) | €

Server:

(AppS) M| (A=Mo)(W) =< N | Mo{W/x}

(Call)* ctx x M | call(A\°x.Mp, W) =2 et x = (A\°X.Mp)(W) in M | e
(Reply)* ctxx M|V = letex=VinM|e

Slicing into the client and server parts

enc enc
Ape = A = Ad

enc

The slicing compilation of AS7¢ into A&7¢ (& closure conversion)

rpc
CC[M] = m
A state-encoding CS calculus A&7¢ with closure
Value v,w = x | clo(F,V)
Term m =
Function store ¢, == {---, F=2Z\%m,---}

The semantics of A\I¢: Confy =" Conf,

Correctness of the slicing compilation
> If M |¢ V, then CC[C[M]] | e =°"* CC[C[V]] | €.

Compilation of the RPC term

Example: (ASf. (ASx.x) 53(f “1c)) 51(ACy. (N5z.z) 2y)

dc :

Os :

main = let r3 = req;(clo(gr, {}), clo(g1o, {}), clo(g11,{})) in rs
g = {f7,f5, ka} X\°z9. let rig = fz zg in req.;(clo(g1,{fs, ka}, rio)
g10 = {} \°y. let na = reqy,(clo(gs, {}), y,clo(go,{})) in rna

g1 = {fs, ka} Xx6. f5 (X6, ka)

g3 = {f1,fs, ka} Nxg. callci(clo(g2, {f7, fs, ka}), xs)
gs = {fs, ka} N°f7. clo(gs,{f7, 5, ka})

g5 = {ka,f} X°f. clo(ga, {fs, ka})) f

86 = {})\SX, k11. k11 X

g7 = {} X°f, ks clo(gs, {ka, f}) s3 (clo(gs. {}))

88 = {})\SZ, k15. k15 z

g = {} N\°x16. Xx16

g1 = {} Mx17. x17

Part Ill: Slicing with stateful calculi

A stateful implementation where some states may persist on the
server during multiple subsequents cycles of request-response

>)\rpc =)\state =)\;s:gate

rpc
RPC calculi CS(Client-Server) calculi
(single unified term) (separate terms)
RPCs identified at type level RPCs identified at term level
_— ___|compilation. |
typed compilation. ,, A< ASE€
(stateless server) (stateless server)
Ay ed compilation. .
144 compilation.
(locative type system) lﬁé%te e /125‘“9
(stateful server) (stateful server)

Motivation

In the following example, the cursor to a query result should persist
on the server before and after the client function invocation:

For example,

ASquery. let cursor = executeOnDatabase(query) in
let name = getNameFromRecord(cursor) in
let r = fejient(name) in
let cursor = nextRecord(cursor) in

Comparison with the state-encoding calculi

S1
S3
C1 S2

Af. XFxx) (fe))Xy Fz.z)y)

Client Stateless njignt Stateful
Server Server
(Req) g4
Z {I c1 (Cal)
2 1
(Req) g2
T [=
i ‘|r i (Repl 2"
(Req)
P
% { | (Reply) 53

A stateful RPC calculus \st2te

rpc

state state
Arpe = A = A%

rpc

In- A5, remote procedure calls explicitly in term-level as:

Term M = V]letx=Min M
| Ve(W) | rea(Ve, W) | call(Ve, W) | ret(V)

In the stateful semantics, a server stack A replaces K as:
> “let x =ret(V) in M| A" in the stateful style instead of

“let x =req(K,V)in M | €' in the stateless style

In the compilation of A, into)\ff,ite,

> A typing derivation directed compilation

» Direct style compilation both for the client and the server

)\state

Compilation of A,c-typing derivations into A7

Direct style compilation both for the client part and the server part

Client: C[Mp] = Mgtate

rpc

Clx] = x

CAx.M] = Xx.C[M]

CAx.-M] = Xx.5[M]

ClLem] = letf=C[L]in cf. (T-App)
let x = C[M] in
let r = f(x)inr

C[LsM] = letf=C[L]in cf. (T-Req)
let x = C[M] in

let r = req(f,x) in r

)\state

Compilation of A,c-typing derivations into A7

Direct style compilation both for the client part and the server part

Server: 5|[Mrpc]] — |\state

SIx] = x
S[Ax.M] = Xx.C[M]
S[Ax.M] = Xx.S5[M]
S[LemM] = letf=S[L]in cf. (T-Call)
let x = S[M] in
let r = call(A°x.let y = f(x) in ret(y), x)inr
S[LsM] = letf=S[L] in cf. (T-App)
let x = S[M] in

let r = f(x)in r

= Note call(-,-) can be both in the tail and non-tail positions.

)\sta te

The semantics of A%

Configuration (Conf): Client | Server
» Client : either a term M or a client context I1

» Server : either a term M or a server context stack A

Client context Tl = ctx x M
Server context stack A 1= ¢ | ctxx M- A

cf.ctxxM =~ letx=[]inM

Evaluation step: Conf =-Stat¢ Conf’

The semantics of A7

A session is (Req) - {(Call) - (Ret)}#er or more.. (Reply), and it may
span multiple cycles of request-response on the client-server model.

Client:
(AppC) let y = (ASx.Mp)(W) in M| A
—state et y = Mo{W/X} in M | A

(Req)* let x = req(ASx.Mo, W) in M | A
=state ctx x M | A; let r = (Ax.Mp)(W) in r
(ValC) letx=Vin M| A =%t M{V/x}|A

(LetC) letx=(lety =My in Mp)in M| A
=" lety = My in (let x= M, in M) | A

(Ret)* let y =ret(V)in My | ctx x My - A (cf. Pop)
=state ctx y M | A; let x =V in My

The semantics of \state

Server:
(AppS)

(Call)*

(Reply)*
(ValS)
(LetS)

rpc

M| A; let y =(Mx.My)(W)in M
=state | A; let y = Mo{W/X} in M

ctx y My | A; let x = call(Ax. Mo, W) in M, (cf. Push)
=state et y = (AX.Mp)(W) in My | ctx x My - A

caxx M| A,V =% Jetx=VinM|A
MlA; letex=VinM = [0]A; M{V/x}

M| A; let x=(let y=Min Mp)in M
=stte 1| A; let y = My in (let x = M, in M)

Slicing into the client and server parts

state state
Arpe = A = A%

rpc

state

Thare into A3 (= closure conversion)

The slicing compilation of A

CC[M] = m
A stateful CS calculus Astete
Value v,w = X | C/O(ll:7 ‘7)
Term m =
Function store ¢, == {---, F=2z\%xm,---}

The semantics of A%t Conf; =°tt Conf,

cs b

Correctness of the slicing compilation
> If M |¢ V, then CC[C[M]] | e ===t CC[C[V]] | e

Compilation of the RPC term

Example: (ASf. (ASx.x) 53(f “1c)) 51(ACy. (N5z.z) 2y)

¢c: main = let r3 =req.(clo(gs,{}), clo(gs,{})) in r3
g = {f1} Azi0. let yo = f7 z10 in ret(yo)
85 = {})\Cy Iet a4 = reqs2(Clo(g47{})v y) in ra

ds: g1 ={} Xx. x
g3 = {} X°f. let x5 = (let 11 = callci(clo(g2,{f}), ¢) in rn1) in
let re = clo(g1,{}) s3 x5 in re

g ={} Nz z

Discussion

An extended semantics for the session management

session # nothing
» client | server or client | server

A mixed strategy
» employs the state-encoding calculi by default
» but switches to the use of the stateful calculi when necessary,

P separating the state-encoding part from the stateful part by
the notion of monadic encapsulation of states
(Launchbuary & Peyton Jones, 1994; Timany et al., 2017)

Related Work

Comparison with the original untyped RPC calculus

» Statically identified remote procedure calls

» A foundation for the stateful implementation in Links

RPC calculi
(single unified term)

CS(Client-Server) calculi
(separate terms)

RPCs identified at type level

RPCs identified at term level

T typed compilati}' agne |compilation. Jgne
Wo:(" [(stateless server) (stateless server)
Aype ———typed compilation. .
"rp Jstate _|compilation. state
(locative type system) rpC i cs
(stateful server) (stateful server)
Cooper& No attempt to identify RPCs RPCs identified at term level
Wadler's compilation
work Arpc Acs
(no type system) (stateless server)

Related Work

In the (untyped) RPC calculus, the automatic slicing into the client
and the server part into the CS (client-server) calculus:

» CPS conversion for stateless server

» Trampolined style for handling calling back from the server
= An HTTP reg-resp based asymmetric implementation

» Defunctionalisation for client and server closed procedures

Related Work

Programmer's view and implementation model

» Symmetric communication vs. asymmetric Communication

» Client-server model vs. peer-to-peer model

Client-server model

Peer-to-peer model

Symmetric
communication

Links (Cooper et al, 2007)
RPC (Cooper&Wadler, 2009)
Typed RPC

(Choi&Chang, 2019)

Lambda5
(Murphy VII et al, 2004)
ML5 (Murphy, 2008)
Multi-tier calculus
(Neubauer & Thiemann, 2005)

Asymmetric
communication

Hop

(Serrano & Queinnec, 2010)
Ur/Web (Chlipala, 2015)
Eliom (Radanne, 2017)

n/a

Conclusion

A typed RPC calculus can statically discerns remote procedure calls
providing type-based slicing with state-encoding and stateful calculi.

Future works

» Location polymorphic functions such as map
T vs. T S

» A location inference method for locations at applications
: |[[\/]]]r1:>7'1wr2:>7'2 as a generalization of ":M]]-rlwrz

» Compilation of the two CS calculi into a session-typed calculus
: Effects for communication ¢ ::=7 chan r | rl7r | r?7 | ---

