A Type and Effect System for Activation Flow of Components in Android
Programs

Kwanghoon Choi

Yonsei University, Wonju, Republic of Korea

Byeong-Mo Chang*

Sookmyung Women’s University, Seoul, Republic of Korea

Abstract

This paper proposes a type and effect system for analyzing activation flow between components through
intents in Android programs. The activation flow information is necessary for all Android analyses such as
a secure information flow analysis for Android programs. We first design a formal semantics for a core of
featherweight Android/Java, which can address interaction between components through intents. Based on
the formal semantics, we design a type and effect system for analyzing activation flow between components

and demonstrate the soundness of the system.

Keywords:

Android, Java, Program analysis, Type, Effect, Control flow

1. Introduction

Android is Google’s new open-source platform for
mobile devices, and Android SDK (Software Devel-
opment Kit) provides the tools and APIs (Applica-
tion Programming Interfaces) necessary to develop
applications for the platform in Java [1]. An An-
droid application consists of components such as
activities, services, broadcast receivers and content
providers. In Android applications, components are
activated through intents. An intent is an abstract
description of a target component and an action to
be performed. Its most significant use is in the ac-
tivation of other activities. It can also be used to
send system information to any interested broad-
cast receiver components and to communicate with
a background service.

Many static analyses of Android programs [2, 3,
4, 5] have adopted the existing Java analyses un-
aware of Android-specific features like components

*Corresponding author
Email addresses: kwanghoon.choi@yonsei.ac.kr
(Kwanghoon Choi), chang@sookmyung.ac.kr (Byeong-Mo
Chang)

Preprint submitted to Information Processing Letters

or intents, which are, however, essential for cor-
rectness of the Android program analyses. Such
Android features make implicit the flow of execu-
tion, hiding it under Android platform. There-
fore, the plain Java analyses cannot figure out all
sound properties from Java programs running on
Android platform. To address this problem, some
Android analysis [5] attempted to introduce “wrap-
per’s modeling the Android features. However,
people have never formalized the soundness of the
existing Java analyses with such an Android exten-
sion.

The main contribution is to introduce a new
featherweight Android/Java semantics, an analy-
sis system for activation flow between components
through intents, and its soundness proof with re-
spect to the semantics. This activation flow anal-
ysis is important because the flow information is
necessary for all Android analyses such as a secure
information flow analysis. This formalization can
be a basis for proving the soundness of the existing
Android analyses.

We present our activation flow analysis as a type
and effect system [6], and the key idea is to regard
as an effect each occurrence of component activa-

March 19, 2014

tion through an intent. We first design a formal se-
mantics for a core of featherweight Android/Java,
which can address interaction between components
through intents (Section 3). We design a type and
effect system for analyzing activation flow between
components (Section 4). Our system extends a
Java type-based points-to analysis [8] with Android
features, which demands us to introduce a simple
string analysis [10] and the notion of effects [6]. The
system records in the effects the name of Android
components to activate, which the string analysis
extracts from intents. We demonstrate the sound-
ness of the system based on the formal semantics
(Section 5). We discuss related work and sketch an
implementation of our system (Section 6).

2. Overview of Android/Java

An Android program is a Java program with
APIs in Android platform. Using the APIs, one can
build mobile device user interfaces to make a phone
call, play a game, and so on. An Android program
consists of components whose types are Activity,
Service, Broadcast Receiver, or Content Provider.
Activity is a foreground process equipped with win-
dows such as buttons and text areas. Service is re-
sponsible for background jobs, and so it has no user
interface. Broadcast Receiver reacts to system-wide
events such as notifying low power battery or SMS
arrival. Content Provider is an abstraction of var-
ious kinds of storage including database manage-
ment systems.

Components interact with each other by sending
events called Intent in Android platform to form an
application. The intent holds information about a
target component to which it will be delivered, and
it may hold data together. For example, a user in-
terface screen provided by an activity changes to
another by sending an intent to the Android plat-
form, which will destroy the current Ul screen and
will launch a new screen displayed by a target ac-
tivity specified in the intent.

The following table lists component types and
some of the methods for activating components of
each type [1].

’ Component Type \ Method for Launching ‘
Activity start Activity (Intent)
Service startService(Intent)

Broadcast Receiver | sendBroadcast(Intent)

class Score extends Activity {
void onCreate () {
this.addButton (1);
// display the score screen

void onClick (int button) {
)

L1: Intent i = new Intent ();
L2: i.setTarget ("Main");
L3: this.startActivity (i);
}
}

Figure 1: Score Class in a Game Program

Note that each occurrence of the above meth-
ods in an Android program is evidence for an in-
teraction between a caller component and a callee
component to be specified as a target in the intent
parameter.

This paper focuses more on Activity than the
other types because Activity is the most frequently
used component type in Android programs. The
proposed methodology in this paper will be equally
applicable to the other types of components.

This paper uses an Android-based game program
shown in Figure 1 and 5 using the APIs shown in
Figure 2, whose details will be explained later.

Let us examine a Java class of the Android pro-
gram in Figure 1.

e Activity is a class that represents a screen in
the Android platform, and Score extending Ac-
tivity is also a class representing a screen.

e Once the Android platform creates a Score ob-
ject, it invokes the onCreate method to add a
button whose integer identifier is 1.

e Now a user can press the button 1, and then
the onClick method is invoked to perform
some action for the button.

e Intent is a class that represents an event to
launch a new screen. It specifies the name of an
activity class that represents the new screen.

e The onClick method sets “Main” as a target
activity in the new intent object and requests
launching by invoking startActivity.

e Android accepts the request and changes the
current Ul screen from Score to Main, which
we call an activation flow of components.

class Activity {

Intent intent;

Intent getIntent () { this.intent; }

void onCreate() { }

void onClick (int button) { }

void addButton (int button)
{ primAddButton (button

void startActivity (Intent i
{ primStartActivity (i)

)i}
)
;)
}
class Intent {
String target;
Object data;
String action;
// The setter and getter methods
// for the above fields

Figure 2: Android Classes: Activity and Intent

The purpose of our type and effect system is to
collect from an Android program all activation flows
such as the above one from Score to Main by regard-
ing Main as the effect of Score. The system needs to
employ a form of string analysis [10] to infer classes
(Main) from strings (“Main”) stored in intents.

3. A Semantic Model for the Android Plat-

form

The syntax of a featherweight Android/Java is
defined by extending the featherweight Java [7].

N :=class C extends C {C f; M}

M :=Cm(Cz){e}

e uw=z|z.flnewC() | a.f=a]|(C)r|zm(T)
| ifetheneelsee| Cz=e; e | prim(z)

A list of class declarations N denotes an Android
program. A block expression C' x = e;e’ declares
a local binding of a variable x to the value of e
for later uses in €’. It is also used for sequencing
e; € by assuming omission of a dummy variable
C x. The conditional expression may be written
as ite e e e for brevity. We write a string ob-
ject as a “string literal.” Also, x.m(“...”) means
String s = “...7; x.m(s) in shorthand. A recursive
method offers a form of loops. The primitive func-
tions prim(z) are interfaces between an Android
program and the Android platform, which will be
explained later.

Using the syntax defined above, we can define a
small set of Android class libraries in Figure 2 to

model component-level activation flow in Android
programs. In Activity, the member field (intent)
will hold an intent object who activates this activ-
ity object. In Intent, the target field will be a target
component to be activated, the data field will be an
extra argument to the target component, and the
action field will describe a service that any activity
activated by this intent will provide. For notation,
{wvoid} is a block intending to return nothing, de-
noted by void, and it may be written simply as { }.

We write an object of class C as C{f =1}
with the fields f and their values I. For exam-
ple, Intent{target =1,data =1 action =1"} de-
notes an intent object. [is a String reference for the
name of a target component, I’ is another object as
an argument, and " is another String reference for
an action description. Following the convention, an
object may be denoted by its reference.

As a formal model of Android programs, we de-
fine an operational semantics for the featherweight
Android/Java. A quadruple (I,w,q,h) of an ac-
tivity stack [, a set w of button windows, an in-
tent reference ¢, and an object heap h forms the
configuration of a screen in an Android program.
l,w,q,h = U',w’,q',h denotes an activation flow
between the two top activity components I; and 1],
which is activated by the intent ¢. [and I’ may be
the same. =" denotes zero or more steps.

A stack of activities [1] is a list / in the first ele-
ment of each quadruple:

(ll"'lnv w, (g, h)

Each new activity reference piles up on the stack in
the order of activation. Only the top activity /; is
visible to a user and the next activity lo becomes
visible when the top activity is removed.

Inside each activity component, the evaluation of
an expression e under an environment £ (mapping
variables into references) results in a value, which
is an object reference [in the final heap, and this is
denoted by the form & > e, w,q,h — I,w’, ¢, 1.

A set w of button windows is merely a set of inte-
ger identifiers for buttons appearing on the screen
being displayed. This is the minimal machinery to
allow users to interact with Android programs. We
write an intent reference in a quadruple as ¢ to de-
note either @) or a reference where () means no intent
reference is set yet. A heap h is a mapping of ref-
erences into objects.

Android platform allows each intent to specify
a target activity either explicitly by giving a tar-

wbeawaqu)—}lvwa(%h

(run) e = (C z = new C();z.onCreate();)
run C = l,w,q,h
C = target(q, h)
e=(C z =new C();
(launch) z.intent = intent; x.onCreate();)
{intent — q} > e,0,0,h — U, w',¢', I
Lw,qh =1 -1L,w,¢ N
i€w, e=x.onClick(b)
(button) {z+—1,b— i} >e,w,q,h — void,w',q b’
l-lLbw,qh=1-1,w,q, 1
e = z.onCreate()
(back-1) {z— lx}>e,0,0,h — void,w',q', 1/
i lo-Lbw,gh =1y -L,w,¢ K
(back-2) 1y -0,w,q,h = 0,0,0,h

Figure 3: Semantic Rules for the Android Platform

get class name or implicitly by suggesting only ac-
tions. The former is called explicit intents, use-
ful for the intra-application components, and the
latter is called implicit intents, useful for the inter-
application components [1]. Our Android semantics
models both of explicit and implicit intents.

To pick a target activity class from an explic-
it/implicit intent reference, we define a function
target(l,h) as: Suppose h(l) = Intent{target =
ly, action = l,, ...}, and then the function returns

o Class(h(ly)) if I; # null
o IntentFilter(h(l,)) if Iy = null and 1, # null

where Class(“C”) = C such that C' is an activ-
ity class, and where IntentFilter(“action;”) = C;
a mapping table of actions (strings describing ser-
vices) onto activity classes that are capable of sup-
porting the services. When the target(l,h) fails
to find any activity class, it is defined to return
activity-not-found error.

Every Android program accompanies a mani-
festo file declaring various kinds of properties of the
classes including such intent filters. In this paper,
such a manifesto file is assumed to exist in a simpli-
fied form as IntentFilter function for our purpose.

In Figure 3, our Android platform is modeled in
the form of non-deterministic semantic rules. (run)
starts an Android program by creating an activity
object of the main class C' to return = to be bound
to [after invoking the onCreate method. (launch)
makes an activation flow from the top activity of

[to a new one !’ through the intent by ¢. The

(var) € x,w,q,h — E(x),w,q,h

E(x) =1y h(ly) = C{f: I}
(ﬁeld) be.f,;,w,q,h—ﬂi,w,q,h
E(@) =1z, Mlz) =C{f =1}, E(y) =1,
(assign) h = h{lr — C{f = ll’ifllylile)n}}
E>x.fi =y,w,q,h — void,w, q, h'
fields(C') = D f, I fresh
(new) B =h{l — C{f =null}}
Ernew C(),w,q,h — lLw,q, h
(cast) Ex)=Lh(l)=D{f=1},D<:C

E> (Qx,w,q,h — l,w,q, h
&> €o, W, q, h — bOaw()a qo, hO
if by then i = 1 else i = 2.

E > e, wo, qo, hg — U, w',q' R
Eiteey ey ea,w,q,h — ', w', ¢, b
E> eo,w,q,h — lo,’LU(),qO, ho
E{x — o} > e, wg, qo, ho — L,w', ¢, A’
E>Cx=cecpe,w,q,h — Lw', ¢, h
E@)=1,h(l)=C{f =1}, E@y:) =1,
mbody(m,C) = B z.e
E = {this 1,z — [;}
Eo>e,w,qh — U, w', ¢, 1
E>axm(y),w,qh — U w, ¢ h

prim is primStartActivity

(invoke)

(pmm—l) £ DpTim(-T)7waQ7h — vOid7w7€(x)7h

(prim-2) prim is primAddButton w' =wU{&(x)}

E > prim(x),w,q,h — void,w', q, h

Figure 4: Semantic Rules for Expressions

rule begins when ¢ is an intent reference(q # 0).
The rule takes the intent reference whose target is
a new activity of class C' and sets ¢ to the intent
field of the activity. Subsequently, the rule invokes
the onCreate method for initialization and returns
the activity reference. (button) invokes the onClick
method of the current activity when a button i of
a window set w is pressed. The invocation returns
nothing, denoted by wvoid. (back-1) and (back-2)
simulate the behavior when a user presses the Back
button to remove the top activity Iy to resume
the next top activity Iy by calling the onCreate
method.

Although the semantics considers only the
onCreate method of Activity class for simplicity,
it can be easily extended to support the whole life
cycle of Activity [1]. For example, in (launch),
the onStop method of the top activity (I;) may be
called before it is hidden by a new one (). In
(back-1) and (back-2), the onDestroy method of

class Main extends Activity {

void onCreate () {
this.addButton (1); // for Game
this.addButton (2); // for Score
this.addButton (3); // for Help
// initialize the main screen

}

void onClick (int button) {
if (button = 1) {

L4: Intent i = new Intent ();
L5: i.setTarget ("Game");
L6 this.startActivity (i);

} else if (button = 2) {
L7: Intent i = new Intent ();
L8: i.setTarget ("Score");
L9: this.startActivity (i);

} else if (button = 3) {
L10: Intent i = new Intent ();
L11: i.setTarget("Help");
L12: i.setArg("Main");
L13: this.startActivity (i);

} else {

// do mnothing

}
}
}

class Game extends Activity {
void onCreate() {
this.addButton(1); // for Help
this.addButton(2); // for Score
this.addButton (3); // for playing
// display the game screen

void onClick (int button) {

if (button = 1) {
L14: Intent i = new Intent ();
L15: i.setTarget ("Help");
L16: i.setArg("Game");
L17: this.startActivity (i);

} else if (button = 2) {
L18: Intent i = new Intent ();
L19: i.setTarget ("Score");
L20: this.startActivity (i)

} else if (button = 3) {

// play the game
} else {

// do nothing
}

}

class Help extends Activity {
void onCreate() {
this.addButton(1); // for Back
// display the help screen

void onClick (int button) {

L21: Intent i = new Intent ();

// String s=(String)

// this.getintent (). getArg();
L22: Intent j = this.getIntent ();
L23: Object o = j.getArg();
L24: String s = (String)o;
L25: i.setTarget(s);
L26: this.startActivity (i);

}

}

Figure 5: A Game Program

the top activity l; may be called before it is re-
moved from the activity stack. Also, instead of call-
ing the onCreate method in (back-1), we may call
the on Resume method of the activity Iy to prepare
the reappearance of the hidden activity (I3).

The semantic rules for evaluating expressions are
defined as in Figure 4, which is mostly standard
[7, 8]. The main difference is an introduction of a
window set and an intent reference to the semantic
rules as our Android runtime system. The standard
Java constructs such as variable, field, and method
invocation do not access nor change them. prim-
StartActivity(z), which we introduce, replaces the
current intent reference ¢ with a new intent refer-
ence bound to z. Also, primAddButton(z) adds a
new button whose identifier is bound to x.

Due to the lack of space, we omit the semantic
rules for handling null pointer reference, casting er-
rors, and other errors such as the absence of meth-
ods or fields and type errors in Figure 3 and 4.

The semantic rules use some auxiliary functions
defined in [7]. mbody(m,C) returns the body ex-
pression of the method of the class, and fields(C)
gathers all fields belonging to the class, if necessary,
following up the inheritance tree.

The proposed semantics is capable of making run
an Android game program in Figure 1 and 5. The
program consists of four activities: Main, Game,
Help, and Score. The entry activity Main offers a
user three buttons each for activating Game, Score,
and Help. During playing a game, a user can check
out game instruction through Help activity. After
the game is finished, the score is displayed by Score

activity and then the user moves to Main activity.
Note that Help can be activated by both Main and
Game. In either case, Help goes back to its caller
activity properly because both caller activities set
their name to the argument of an intent to activate
Help with. Note that using activity stack allows to
omit setting one’s own name for coming back.

4. A Type and Effect System

This section proposes a type and effect sys-
tem to analyze activation flow between components
through intents. Our system is a type-based points-
to analysis system [8, 9] extended with a simple
string analysis [10] and effects [6].

Our system abstracts objects by an annotated
type S, which has the form of C{R}, where C is a
class or primitive type and R is a set of program
points. We are particularly interested in program
points for an object creation expression in a pro-
gram. The type C{R} represents objects of C,
which are created at one of program points in R.

For example, in Line 22 of Figure 5, the intent
variable j has (annotated) type Intent{r10,r14}.
This is because the reference in j points to either
an intent object created in Line 10 (denoted by
a program point r10) or one in Line 14 (denoted
by another r14). For convenience, this paper uses
mostly line numbers for program points.

Each effect represents a set of components, which
can be activated through intents in Android pro-
grams. The effect ¢ is defined by

pu={C} |pr1Ups |0

where C denotes a component name, which is actu-
ally a class name. So ¢ will be a set of component
(class) names.

Using effects, a method type is defined to be the
form of § %> T, denoting that calling a method of
the type may make effect .

In our type and effect system, typing judgments
for expressions have the form of

I'e: C{R},p

where, under the typing environment I' (mapping
variables to annotated types), an expression e eval-
uates to an object of C, which is created at a pro-
gram point in R, and during computation, side ef-
fects (activation of other components) expressed by
¢ might occur.

Our typing rules for expressions in Figure 6 de-
pends on field and method typings F' and M. A
field typing F(C,r, f) assigns a type to each field f
of class C' in objects created at a program point r.
A method typing M (C,r,m) associates a method
type of form S % T with each method m of class
C in objects created at a program point r. We will
discuss how to get field and method typings later.

For example, the field intent of class Help in ob-
jects created at rpep gets a field typing as

o F(Help, Theip, intent) = Intent{r10,r14}

by the reason explained previously. Note that r.
is a program point of an object creation expression
“new C() in (launch). For example, rpe;p is a pro-
gram point of the expression in (launch) creating a
Help activity (by replacing C' with Help).

For example, the onClick method of Score in
objects created at rs.ore gets a method typing:

o M(Score, rscore, onClick)
= int{ryutton } M void{}

where Tpytton 1S another program point to iden-
tify integers i created at (button). In Line 2, the
setTarget method sets “Main” to the target com-
ponent name of an intent i (created at Line 1) to
activate Main in Line 3, so the effect of the onClick
method is {Main} obviously.

However, target component names set by the
setTarget method are not always obvious. In
Line 25 (the onClick method of Help), the tar-
get component name is given by a variable s. The
target component names will become obvious only
after some string analysis is employed to uncover
strings to which s will evaluate.

Our system with annotated types includes a sim-
ple form of string analysis by having a string ta-
ble Q(r), mapping each program point r onto ei-
ther a set of string literals or T (denoting a set
of all string literals). Every expression of type
String{ R} will evaluate to some string in the union
of sets of strings (r) for all » € R. For exam-
ple, Q(r12) = {“Main”} and Q(r16) = {“Game”}
since the two strings occur at Line 12 and 16, re-
spectively. The type of the variable s in Line 25
turns out to be String{r12,716}, and so s will eval-
uate to a string in {“Main”, “Game”}.

The string analysis in our system explained until
now can be regarded as [8]. In addition, our system
extends it to deal with Android activation flow with
new typing rules using the notion of effect. Without

the new rules, the string analysis will lose some data
flow among activities in Android programs and so
will be unsound, as will be explained later.

Now we present a set of typing rules in Figure 6.
The system needs subtyping relations defined in the
standard way. C <: D if C is the same as D or its
descendant class; C{R;} <: D{Rz2} if C <: D and
RiCRy S, 25 S < T, 5 Tif T, <: S for all i,
S <: T, and ¢1 C 9. For convenience, the nota-
tion F(C, R, f) <: S means that F(C,r, f) <: S for
all » € R. The reverse direction of the notation and
M(C,R,m) <: S; & T can be defined similarly.

(T-var) looks up the type of a variable from the
typing environment. (T-field) directs the flow of
objects stored in the field to the reader by z.f by
the subtyping relation. (T-assign) specifies the flow
of objects from the right-hand side y to the field
x.f. (T-new) abstracts all objects generated in each
new C() expression with a program point r by an
annotated type C{r}. In (T-var), (T-field), (T-
assign), (T-new), and (T-cast), each expression has
no effect. (T-if) merges data flows of the branches
by assigning the same type to them. In (T-if)
and (T-block), the effect of each expression is the
union of all the effects from its sub-expressions. (T-
invoke) defines the type of each method m is more
specific than the method type formed with actual
argument and return types in the caller. The effect
of each invocation expression results from that of
the called method. (T-sub) allows the same expres-
sion to have a less precise type and effect.

(T-string) collects all occurrences of string liter-
als and their program points in the string table.

The typing rules from (T-var) to (T-string) are
ones in [8] extended with effects in this paper. (T-
prim-1) and (T-prim-2) are new.

(T-prim-1) has two roles as the origin of an effect
and as a (data flow) bridge between caller and callee
activities. First, the effect of this primitive is target
component names that the primitive may activate,
and will be computed by the effect function over the
type S of intents that the primitive takes. Second,
the rule has a condition as

S <: F(C,re,intent) for all C € effect(S)

to express passsing intents of type S from a caller to
all callee activities in (launch) by a field assignment
“x.antent = intent”.

(T-prim-2) causes no effect.

The function effect(S), collecting a set of po-
tential target component names from an intent

(T-assign)

(T-var) T{z:S}>z:S,0
F(C,R,f) <: 8
(T-field) =GR b .y 5,0
S <: F(C,R, f)

T{z:C{R},y:S}>a.f=y:void{},0

(T-new) I't>new C():C{r},0 for unique r
(T-cast) Cl<:C2 or C2<:(C1
I'{z: C1{R}} > (C2)x : C2{R},0
I > eq : boolean{ R}, ¢
(T-if) F>e S0 (1=1,2)
I'>iteeg er e : S, 90U p U
I'>e;: C{R}, 1
(T-block) I'{z:C{R}}>ea: S, 0
F'cCax=e1; e3: 5,01 Ups
. M(C,R,m)<:8; 5T
T_ k Y) 3
(Tinvoke) e O Ry 5.} & em(@) T
FI>GZS,<,01 S<:T Qﬁlg(pz
(T-sub) I'>e:T, o
. “s” € Q(r) for unique r
(T-string) L' “s” : String{r},0
(x:8) e T effect(S) = ¢
(T-prim-1) S <: F(C,re,intent) for all C' € ¢
I' > primStart Activity(z) : void{}, ¢
(T-prim-2) (x:int{R}) € T

T > primAddButton(zx) : void{},

Figure 6: A Type and Effect System

type S, is an abstraction of target(q,h) for each
intent reference ¢ of type S in heap h, as will
be proved later. We define this function as the
least set ¢ satisfying the following conditions: S is
Intent{R} and, for each r € R, there are R; and R,
such that F(Intent,r,target) = String{R;} and
F(Intent,r,action) = String{R,}. Then,

o Class(Q(ry)) C o for all 1y € Ry
o IntentFilter(Q(ry)) C ¢ for all r, € R,

For example, intent objects at r10 and r14 are
passed to Help in Line 13 and 17 respectively as:

o M(Main, rmain, start Activity)
= Intent{rio} {Help}, void{}
o M(Game,rgame, start Activity)
= Intent{ris} A}, void{}
Due to the intent passing, (T-prim-1) forces both
Intent{r10} and Intent{r14} to be a subtype of
F(Help, rhelp, intent), which is Intent{r10,r14}.

In Line 26, the type of 4 is Intent{r21}.
effect(Intent{r21}) is {Main, Game} if the target
component of ¢ set by the setTarget method in Line
25, i.e., s, evaluates to “Main” or “Game”. The
evaluation is analyzed to be so by the condition of
(T-prim-1) as follows. In Line 23 and 24, s is from
the data field of another intent j. In Line 22, j
is from the intent field of Help, and it is of type
Intent{r10,r14}. The data field of intents of the
type evaluates to “Main” or “Game” because of

o F(Intent,r10,data) = String{r12} and
o F(Intent,r14,data) = String{rl6}.

Therefore, so does the target component of i (of
type String{r12,r16}), which cannot be analyzed
without (T-prim-1). In Line 26, we thus have:

o M(Help, rheip, startActivity)

= Intent{ra} AMain,Game}, void{}

The effect of a class is the union of effects of all
methods in a class C, denoted by effect(C). For ex-
ample, the effect of Main, Score, Game, and Help
is {Game, Score, Help}, {Main}, {Score, Help},
and {Main, Game}, respectively. In a well-typed
Android program, C' will activate one in effect(C)
by the soundness of our system to be shown later.

As in [8], F and M should be well-formed:
FCr f) < F(D,rf) and M(C,r,m) <:
M(D,r,m) for all r and C' <: D, which are natural
extensions of those for Java. This well-formedness
is enforced by having a subtyping relationship be-
tween each pair of overriding/overridden methods.

Every Android program is well-typed if, for all
classes C, program points r, methods m, method
types S < T such that M(C,r,m) = S 5 T, we
can derive {this : C{r},z : S} >e : T,¢ where
mbody(m,C) = D C z. e (C and D are S and T
without annotations).

5. Soundness of the Type and Effect System

The soundness of our type and effect system
means that every activity in a well-typed Android
program will activate only the activities in its effect.

For a formal statement of the soundness, we de-
fine a proposition flow(C, D) for two lists of activ-
ity classes C' and D to declare that each activity on
the stack is activated by an activity directly under
itself. The proposition is true if

° D:C, D:CO'C, or D=C5

such that Cj_; € effect(Cy,) for k > 1.

We extend it to more than two lists of ac-
tivity classes as: flow*(C, Dy, ..., D,,) is true if
flow(C, Dy), ..., and flow(D,,_1, D,,) are all true.

In the following theorem, we associate a stack of
activities [with classes C by a relation [~ C where
each [; is an activity object of class C;.

Theorem 1 (Soundness for Android/Java).
Suppose an Android program N is well-typed. For
a main activity class C in the program,

o run C = llawlaQ17hl =" lnuwm_)q"ubwn

such that flow*(C, D1, ..., D,,) where I; ~ D;.
Otherwise, the evaluation stops with null error,
cast error, or activity-not-found error.

Lemma 1 (Intent Abstraction). If >h: H and
H>1: Intent{ R} for some R then

o target(l, h) € effect(Intent{R}).

Otherwise, the evaluation of target(l, h) returns ei-
ther null error or activity-not-found error.

The soundness theorem says that, when an An-
droid program is well-typed, the execution will have
three cases, all satisfying the activation flow propo-
sition: it may run normally to stop with 0,0, 0, h, it
may run some infinite loop, or it may get stuck due
to an erroneous event from one of the null reference
error, the casting error, and the activity not found
error (the other kinds of errors will never happen).

Two soundness lemmas on expressions and
quadruples constitutes the proof of this soundness
theorem. The two lemmas and the proofs are in the
extended version [11].

The intent abstraction lemma supports the
soundness theorem in the case with (launch) of the
proof on quadruples. In order to satisfy the activa-
tion flow proposition, the effect of the top activity
class in the stack of a quadruple should include a
target class C' to launch, which is true because of
this: the target activity of the intent in (launch)
is a member of the effect of the intent type by the
intent abstraction lemma, and the effect of the in-
tent type is included in the effect of the top activity
class by allowing only well-formed quadruples [11]
in the execution.

6. Discussion

There are several relevant systems for Android
inter-component communication analysis to report

security problems. ScanDroid [2] is a security cer-
tification tool to check if data flows in Android
programs are consistent with their specifications.
ComDroid [3] searches for predefined patterns of
potential vulnerabilities. ScanDal [4] analyzes data
flows between Android security sources and sinks.
EPIC [5] is a scalable inter-procedural analysis for
detecting attacks for Android vulnerabilities.

The existing static analyses of Android programs
have little semantic-based accounts on how their
Android specific analyses interplay with the Java
analyses they are based on. Contrary to this, we
formally proved the soundness of our Android anal-
ysis. In this respect, our proposed system can be
regarded as a theoretical basis for them.

In practice, one can also implement our system
as a fully automatic analyzer for featherweight An-
droid programs such as our game example. To sup-
port this claim, our prototype is available at:

http://mobilesw.yonsei.ac.kr/paper/android.html

Our Android analyzer consists of five steps to
compute the effect of activities in an Android pro-
gram. First, it applies the standard Java type
checking procedure to an Android program to at-
tach Java types to the abstract syntax tree. Sec-
ond, it collects all classes declared and referred in
the program and all program points for object cre-
ation sites. Third, it initializes field and method
typings for the classes and program points with
the Java types annotated with new program point
set variables and effect variables. Fourth, it gen-
erates subtyping constraints and activation con-
straints on the variables by applying the typing
rules to each method typing according to the well-
typedness. Fifth, it solves all the constraints to
produce a solution (mapping of the variables onto
ground program point sets and effects) that com-
pletes the field/method typings.

The method typings thus computed offer infor-
mation enough for the analyzer to compute the ef-
fect of each Activity class, which is our goal.

Note that the analyzer deals not only with the
subtyping constraints as in [8], but it also introduce
a new form of constraints Intent{S} = ¢ for each
use of primStartActivity(...) in an Android pro-
gram. We call this an activation constraint. Solving
each activation constraint is to generate a new sub-
typing constraint S <: F(C,r.,intent) whenever a
new class C' becomes belong to the effect of this
intent type S, effect(S). Having all the generated

subtyping constraints will enforce the universally
quantified condition in (T-prim-1).

7. Conclusion

We have proposed a type and effect system for
analyzing activation flows between components in
Android programs where each activation of a com-
ponent through an intent is regarded as an effect.
Also, we have presented a featherweight Android/-
Java semantics that the soundness of our Android
analysis is based on. To support the feasibility of
our system as a full automatic analyzer, we have
presented a prototype, though we need to extend it
further to apply to real Android programs, which
is a future work.

References

[1] The Android Developers Site,
http://developers.android.com, 2013.

[2] A. P. Fuchs, A. Chaudhuri, J. S. Foster, Scandroid:
Automated Security Certification of Android Applica-
tions, Tech.Rep. Technical Report CS-TR-~4991, Dept.
of Computer Science, University of Maryland, 2009.

[3] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, An-
alyzing Inter-Application Communication in Android,
Proceedings of the 9th Annual Int’l Conference on Mo-
bile Systems, Applications, and Services, 2011.

[4] J. Kim, Y. Yoon, K. Yi, J. Shin, SCANDAL: Static
Analyzer for Detecting Privacy Leaks in Android Ap-
plications, Mobile Security Technologies, 2012.

[5] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bod-
den, J. Klein, Y. Le Traon, Effective Inter-Component
Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis, 22nd
USENIX Security Symposium, 2013, pp.543-558.

6] T. Amtoft, F. Nielson, H. R. Nielson, Type and Effect
Systems: Behaviors for Concurrency, World Scientific
Publishing Company, 1999.

[7] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight
Java: A Minimal Core Calculus for Java and GJ, ACM
Transactions on Programming Languages and Systems,
23(3), 2001, pp. 396-450.

[8] L. Beringer, R. Grabowski, M. Hofmann, Verifying
Pointer and String Analyses with Region Type Sys-
tems, Proceedings of the 16th Int’l Conference on Logic
for Programming, Artificial Intelligence, and Reason-
ing, 2010, pp. 82-102.

9] A. Milanova, A. Rountev, B. G. Ryder, Parameterized
Object Sensitivity for Points-to Analysis for Java, ACM
Transactions on Software Engineering and Methodol-
ogy, 14(1), 2005, pp. 1-41.

[10] A. S. Christensen, A. Mgller, M. I. Schwartzbach, Pre-
cise Analysis of String Expressions, Proceedings of the
10th Int’l Static Analysis Symposium, 2003, pp.1-18.

[11] K. Choi, B. Chang, A Type and Effect System for Acti-
vation Flow of Components in Android Programs, Tech-
nical Report TR-Mar-2014-1, Yonsei University, Wonju.

This appendix is only for reviewers and their re-
view, and is available in the extended version [11]
of this paper.

Appendix A. Definitions and Lemmas for
Soundness

To formulate the soundness property of Android
programs, we define typing rules for the semantic
elements:

e Reference typing: H > null : null{}. H>1:
C{r}itH{)=C{r}. Hov:TiH{H>v:S

and S <: T where v is either null or .

e Environment typing: either H >0 : 0, or H >
E{z:l}:T{z:S}itH>E:Tand H>1: S

e Window typing: >{%1, ..., @,} : W for arbi-
trary integers. W is the window set type.

e Heap typing: >0 : 0. >h{l — C{f = I}
H{l : C{r}} if >h : H, fields(C) = f, and
Hel;: F(C,r, f;) for some r.

Note that reference typing for primitive values
such as int or boolean is as follows: H >4 : int{r}
or H > b : boolean{r} for some r. Also note that
reference typing for intents is written as H > ¢ : Q
where ¢ is [and Q is Intent{R} for some R.

Note that heap typing for strings is as follows:
>h{l — “str”} : H{l : String{r}} if >h : H and
Q(r) = {“str”} for some r.

A quadruple (I,w,q,h) is well-formed if there
exists H and Q such that H(l;) = C;{r;} and
C; <: Activity for all [; € [and s, Dw @ W,
H>q: Q, >h: H, effect(Q) C effect(C), Cr—1 €
effect(Cy)(k = 2,...,n), and Q <: F(D,rq,intent)
for all D € effect(Q).

The two lemmas for soundness of expressions and
quadruples are as follows.

Lemma 2 (Soundness of Expressions).

Suppose Hi>& : T, T>e : S, >pw : W,
Hrq: Q, >h:H, and Q <: F(D,ry,intent) for
all D € effect(Q). There exist H' and Q' such that

e Ee,w,q,h — Lw, ¢, 0, HCH 6 H () <:
S,pw W, H'>q : @, >h': H, effect(Q) C
effect(Q) Uy, and Q" <: F(D',rq,intent) for
all D' € effect(Q’)

Otherwise, the evaluation stops with null error or
cast error.

10

Lemma 3 (Soundness of Quadruples). If
l,w,q,h is well-formed then

e cither Lw,gh = Uw,¢ K such_ that
U',w' g, b is also well-formed and flow(C, C")
where I ~ C and ' ~ C", or (B, w,q,h) stops.

Otherwise, the evaluation stops with null error,
cast error, or activity-not-found error.

Appendix B. Proof of Theorem 1 (Sound-
ness for Android/Java)

Since C' is an activity class by the assumption,
C has an onCreate method. Let £ be {} and let
T be {}. Also let w, g, and h be all). Let e be
(C z = new C();x.onCreate();z). By the well-
typed program condition, M (C,r.,onCreate) =
() % wvoid{}, which implies T' > e : C{r.}, for
some (.

If we let @ and H both be () then the hypotheses
of Lemma 2 are all satisfied by the following obser-
vation. Since Q is empty, effect(Q) is empty too
and so Q <: F(D,rq,intent) for all D € effect(Q)
holds trivially.

The application of Lemma 2 allows the evaluation
E>ew,q,h — Lw,q¢,h. Also, by Lemma 2,
there exists Q" and H’ such that H C H', H'(I) <:
C{re}, bw W, H' >q' : Q' >h : H', effect(Q') C
effect(Q) U p, Q' <: F(D',rq,intent) for all D’ €

effect(Q’).
Now we verify the well-formedness of
(l,w',q' k). Since Q is 0, effect(Q) is empty.

This implies effect(Q’) C effect(Q) U p = 0 U ¢.
The effect ¢ comes from invoking the onCreate
method of C, we have ¢ C effect(C), which leads
to effect(Q’) C effect(C). Since the quadruple has
an activity stack of a single activity reference I,
the well-formedness condition for activity stack is
trivially satisfied; Cy_1 € effect(Cy) for k =2,...,n
where n is 1.

Since (I,w',¢’, ') is a well-formed quadruple, we
can apply Lemma 3, which allows an evaluation
Lw',q,h = I, w1, q1,h1. Again, the quadruple
(l}, w1, q1, k1) in the right-hand side of the evalua-
tion is also well-formed by the lemma, and so we
can repeat the application of the lemma until the
evaluation stops.

The application of Lemma 3 ensures the flow
condition between two subsequent quadruples. To
combine these flow conditions for all such pairs of
subsequent quadruples involved in the series of eval-
uation, we get the flow condition in Theorem 1,

which finishes the proof of the soundness of An-
droid/Java.

Appendix C. Proof of Lemma 2 (Soundness
of Expressions)

We prove this lemma by induction on the height
of the evaluation of expressions. The lemma is a
combination of a progress property, saying the well-
typedness of a given expression allows to have a le-
gal evaluation on it, and a subject reduction prop-
erty, saying the every well-typed expression evalu-
ates to a well-typed value.

Case (var). Let e be z. By the hypotheses of the
lemma, I'>2 : S. By (T-var), I'(z) = S. Since H >
€ : T, E(z) exists, which implies € > z,w,q,h —

E(x),w,q,h.

Let H' and Q@ be H and Q. Then
H{l) = H(I) < T(x) = 5. Also,
effect(Q') = effect(Q) C effect(Q) U ¢. The

other conditions follow the hypotheses immedi-
ately.

Case (field). Let e be z.f;. By the hypotheses
of the lemma, I'(x) = C{R} and F(C,R, f;) <: S
by (T-field). By the environment typing, H > I, :
C{R}, which implies H(l,) = D{r} <: C{R} for
some D{r} by reference typing. Since D <: C, D
has a field f;, which allows an evaluation as £ >
x.fi,w,q,h — l;,w,q, h where [; is a reference in
fi of an object h(l).

Let H and Q' be H and O.
typing, H' > I; F(D,r, f;), which implies
H(l;) <2 F(D,r, fi). F(D,r fi) < F(C,r f)
holds by D <: C, and F(C,r, f;) <: S by the
hypothesis of (T-field) and r € R. To sum these
up, H'(l;) <: S. The other conditions immediately
follow the hypotheses.

By heap

Case (assign). By (T-assign), I'(x) = C{R}
and I'(y) = T such that T <: F(C,R, f;). The
environment typing says that there exists [, and
ly such that £(z) = I, and E(y) = [, and it
also says that h(l,) = D{f = [}, which implies
H(l,) = D{r} for some r by the heap typing. Since
H(ly) <: C{R} and H(l,) <: T by environment
typing and heap typing, we have D{r} <: C{R}
such that 7 € R and H(l,) <: T <: F(C,r, f;). By
the field typing F(C, R, f;) and the type of z, I,
is a reference to an object who has f; as a field.
Since D{r} <: C{R}, D <: C and the field f; of

11

C is also available in D. This makes an evalua-
tion £ > z.f; = y,w,q,h — void,w, q,h’ where
h = h{lx — D{f = l1,1_1lyli+1,n}}.

Since H(l,) <: F(C,rf;), we have
He>1l, : F(C,r fi). This implies >h{l, —
D{f = hi-lylisin}} © H{lo : D{r}} by heap
typing. If we let H' be H, then >h' : H'. Also if
we let Q' be Q, then the remaining conditions of
the conclusion in the lemma are trivially satisfied.

Case (new). Let e be new C(). We have an
evaluation &£ > e,w,q,h — l,w,q,h’ where h' is
h{l — C{f = null}}.

Let H' be HU{l : S} where S = C{r}. Then
H'(l) <: S trivially holds. By (new), ¢’ is the
same as q. By the hypothesis, H > ¢ : Q is
given. Let Q' be Q. Then H' > ¢’ : Q' by the
weakening of the reference typing since H C H'.
Similarly, H' > I; : S; for all [; € dom(H) by
Hr>1; - S; and the weakening of the heap typing.
Also, H' > 1 : C{r} because H' > null : null{}
and null{} <: F(C,r, f;). Consequently, we have
>h' : H'. Since Q' is defined as Q, the remaining
conditions of the conclusion in the lemma are
satisfied immediately.

Case (cast). Let e be (C)z. Suppose I'(z) =
E{R} by (T-cast). &(x) =1 and h(l) = D{f = [}
by (cast). By heap typing, H(l) = D{r} for some
r. By environment typing, we have D{r} <: E{R},
which implies r € R.

When E <: C, (cast) allows to have an evaluation
E>e,w,q,h — l,w,q,h. Let H' be H. Then we
can verify H'(l) = D{r} <: E{R} <: C{R}. The
remaining conditions are satisfied immediately by
letting Q' be Q.

When D <: C <: E, we have the same evaluation
as above. When we let %' be H, H'(l) = D{r} <:
C{R}.

When C <: D or C and D do not have any in-
heritance relationship, it leads to the casting error.

Case (if). Let e be ite eg €1 e2. By (T-if), we have
a typing T’ > e : boolean{R}, pg, which, together
with the hypotheses of the lemma, allows to apply
an induction to eg.

The induction allows to have an evaluation &£ >
eo,w,q,h —> bg,wq,qo, hg. It also implies that
there exist Hg and Qg such that H C Hg, >ho : Ho,
Ho > qo : Qo and effect(Qg) C effect(Q) U vp.

We know that by is either true or false by the
(extended) reference typing.

By (T-if), we have another typing I't> ey, : Sk, &
for each of k = 1,2. It is straightforward to verify
the induction hypotheses over ey.

The second induction implies that, depend-
ing on the result of evaluation of ey, we have
E > eg,wo,qo,ho — Liw', ¢,k by (if). By the
induction, there also exist H’' and Q' such that
H(l) <: S and effect(Q') C effect(Qp) U ¢i.
effect(Qp) U g C effect(Q) U o U 1 U pa.

Case (block). Let e be C © = e1; es. By (T-
block), we have a typing I' > e; : C{R},¢;. To-
gether with the hypotheses of the lemma, we can
apply an induction over e;.

The induction allows to have an evaluation £ >
e1,w,q,h — l1,w1,q1,h1. It also implies that
there exists H1 and Q4 such that H C H, Hi>qy :
Q1, Hi(lh) <: C{R}, and effect(Q;) C effect(Q) U
P1-

Since H1 > 11 : C{R}, Ha> E{z — 1} : T{z :
C{R}} by environment typing. Then It is easy to
verify the induction hypotheses over es.

The second induction allows to have an evalu-
ation E{z — U1} > es,w1,q1,h1 — Lw', ¢}
It also implies that there exist H’' and Q' such
that Hy C H', H'() < S, H >q : @, and
effect(Q’) C effect(Q1) U pa.

Then we see effect(Q’) C effect(Q) U ¢1 U o

Case (invoke). Let e be z.m(y). By the envi-
ronment typing, there exist [, and [;s such that
E(x) = 1, and E(y;) = l;. It also suggests that
H > I, : C{R}, which implies that h(l,) = D{f =
I'}, H(l;) = D{r} for some r, and D{r} <: C{R}
by the heap typing.

By (T-invoke), the method typing M(C, R, m)
implies that there exists a method m in C, and a
method named m is also available in D by D <: C.
Therefore, we have mbody(m, D) = B Z.eq.

(T-invoke) also offers M(C,R,m) <: S; % S.
Let M(D,r,m) = S/ % §'. Since D <: C, the
well-formedness of method typings allows to have
M(D,r,m) <: M(C,r,m) <: M(C,R,m). This
subtyping relations imply S’ <: S and S; <: 5.

Let & be {this + l,,Z + I;} and Ty be {this :
D{r},z; : 51’} By the well-typedness of a given
program, we have a typing I'g > e : S, ¢’. By en-
virionment typing, H > & : ['g. The rest of the in-
duction hypotheses immediately come from the hy-
potheses of the lemma. This allows to use an induc-
tion over ey to have an evaluation &y>eq, w, g, h —

12

Lw,q, .

Once the induction is applied, there exist H’
and Q' such that H C #H', H'(l) <: S', and
effect(Q’) C effect(Q) U ¢'. Since S’ <: S,
we have H'(l) <: S. Also, by ¢ C ¢,
effect(Q’) C effect(Q) U .

Case (prim-1). We have an evaluation & >
primStart Activity(z),w,q,h — wvoid,w,E(x),h
unconditionally. By environment typing, H>E(z) :
I'(x). By (T-prim-1), there exists S, such that
I'(z) = S, and effect(S,) = ¢. Since ¢’ is &(x),
if we let @' be S, and H' be H, then we have
H'>E(x) : Q. Now it is easy to verify effect(Q’) =
effect(S;) = ¢ C effect(Q) U .

(T-prim-1) offers an invariant condition
Sy <: F(C,reintent) for all C € effect(S),
which is a condition required in the conclusion.

Case (prim-2). We have an evaluation
E > primAddButton(z),w,q,h — wvoid,w U
{&(x)}, ¢, h unconditionally. By (T-prim-2), H >
E(x) : int{R} for someR. By the extended refer-
ence typing, £(x) is an integer, and so wU{E(x)} is
a set of integers by the hypothesis >w : W. There-
fore, >w U {E(z)} : W.

Appendix D. Proof of Lemma 3 (Soundness
of Quadruples)

We prove this lemma by case analysis of the se-
mantic rules used for quadruples.

Case (launch). Let & be {intent — ¢} and let I’
be {intent : Q}. Since the hypothesis H > ¢ : Q
is given, we have H > £ : I' by environment typ-
ing. Also let e be C z = new C(); x.intent =
intent; z.onCreate(); x. We let r. be a unique
program point for the object creation expression
“new C()” in e. By applying typing rules (T-block),
(T-assign), (T-invoke), (T-var), we derive a typ-
ing judgment I' > e : C{R}, ¢ for some R using
the hypotheses of the well-formedness of quadruples
Q <: F(C,re,intent) in (T-assign) and using the
hypothesis C' <: Activity (M(C,r.,onCreate) <:
void{} % wvoid{}) with the well-typed program
condition in (T-invoke). It is easy to construct the
rest of hypotheses necessary to apply Lemma 2 with
to result in an expression evaluation e, 0, 0, h =
U',w',q,h'. This leads to an activation flow by
(launch) as [, w,q,h = I' - l,w’, ¢, h'.

Now we verify the well-formedness of the quadru-
ple I'-1,w’,q', /. h'(I') is another activity (of class

C') since the expression e is defined to return it
by z. By Lemma 2, effect(Q') C effect()) U =
U o, and, by def. of ¢ over classes, we have
¢ C effect(C) because ¢ is the effect from invok-
ing the onCreate method of C. To combine them,
we have effect(Q’) C effect(C).

Let D;s are the classes for the objects re-
ferred to as I; in I. Then flow(D,C - D) holds if
C € effect(Dy), which is true because, by the intent
abstraction (Lemma 1), target(q) = C € effect(Q)
and, by the hypothesis in the well-formedness of
quadruples , effect(Q) C effect(D;). The flow
condition flow(D,C - D) of the lemma holds
because of C € effect(D;).

Case (button). Let & be {z — l1,b— i} andlet I’
be {x : C1{r1},b: int{}}. By the well-formedness
of quadruples, H(l1) = C1{r1}. Then we have H >
€ : T by environment typing. By the well-typed
program condition and by Cy <: Activity, we have
M(Cy,r1,0nClick) <: int{} 2 wvoid{} for some
. This allows to apply (T-invoke), giving a typing
judgment T' > x.onClick() : void{}, . It is easy
to verify the rest of hypotheses necessary to apply
Lemma 2.

The application of Lemma 2 allows to have an
expression evaluation & > z.onClick(),w,q,h —
void,w’,¢',h' and effect(Q") C effect(Q) U .
Then (button) allows a quadruple evaluation Iy -
Lw',¢,h =1 -l,w,q,h.

Now let us verify the well-formedness of (Iy -
Lw',q',h). effect(Q') C effect(Cy) holds by com-
bining two things since effect(Q’) C effect(Q) U
. We have effect(Q) C effect(Cy) by the well-
formedness hypothesis of (I; - [,w,q,h). The ef-
fect of calling the onClick method of Cp is ¢
by the typing judgment above, and so we have
¢ C effect(C1). The rest of the well-formedness
hypotheses of (I; - I,w’,q’,h') come from the well-
formedness hypotheses of (I; -1, w, g, h) and the ap-
plication of Lemma 2.

The flow condition flow(Cy - C,Cy - C) of the
lemma trivially holds.

Case (back-1). Let £ be {z — l2} and let ' be
{z : C2{rs}}. By the well-formedness of quadru-
ples, H(ls) = Ca{ra}. Then we have H1>E : T by
environment typing.

By the well-typed program condition and by
Cy <: Activity, we have M(Cy,rq, onCreate) <:

() % woid{} for some ¢. This allows to ap-

13

ply (T-invoke), giving a typing judgment I' 1>
x.onCreate() : wvoid{},o. Tt is easy to verify
the rest of hypotheses necessary to apply Lemma
2. By the application of the lemma, we have
& > z.onCreate(),0,0,h — wvoid,w’,q',h’ and
effect(Q’) C effect(d) U = @ U ¢. This makes
l-do-Liw,gh =1y -L,w,¢ K.

(Iy - L,bw',q',h') can be verified to be well-
formed. First, effect(Q’) C effect(Cy) because of
effect(Q’) C ¢ by the application of Lemma 2
and ¢ C effect(Cy) by the fact that the effect
@ comes from invoking the onCreate method of
C5. The rest of the well-formedness hypotheses of
(Iy - I,w', ¢, h') come from the well-formedness hy-
potheses of (I - lo - I,w’,¢’, ') and the application
of Lemma 2.

The flow condition flow(C-Cy-C,Cy-C) holds
because Ci_1 € effect(Cy) for k = 2,...,n by the
well-formedness of (Iy - lo - I,w’, q', h')

Case (back-2). The well-formedness of (I; -
0, w,q, h) includes the condition >h : H, implying
that (0,0,0, k) is well-formed. The flow condition
flow(C1,0) also holds.

Appendix E. Proof of Lemma 1 (Intent Ab-
straction)

Let h(l) be D{target = l;, action = I, ...
D <: Intent.

Case Iy # null. h(ly) = “C” for some string
since the type of the target field is String. Then
Class(h(l;)) = C. By heap typing with I,
there exists r; such that H(l;) = String{r:} and
Q(ry) = {“C”}. Also, by heap typing with [,
we have H > l; : F(Intent,r, target) for some r,
and so String{r:} <: F(Intent,r,target) where
F(Intent,r target) = String{R,} and r, € R, for
some R;. By def. of effect(S) and by r; € Ry, C €
Class(“C”) C Class(2(ry)) C effect(Intent{R}).

Case l; = null and I, # null. We apply the
similar argument as above to this case to have
h(ly) = “action”, H(l,) = String{ra}, Qry) =
{“action”}, and String{r,} <: String{R,} =
F(Intent,r,action) for some r, and R,. Then
IntentFilter(“action”) either returns C or raises
activity-not-found error, depending on the pres-
ence of a pair (“action”,C) in the intent fil-
ter. Unless we get activity-not-found error, C' =
IntentFilter(“action”) C IntentFilter(Q(ry)) C
effect(Intent{R}).

} where

Case l; = null and [, = null. We get null error
in the evaluation of the target calculating function.
O

Appendix F. Implementation

We have implemented in Haskell the proposed
type and effect system for featherweight Android/-
Java as an automatic analyzer, which is available in
http://mobilesw.yonsei.ac.kr/paper/android.html.

Our Android analyzer takes five steps: it first ap-
plies the standard Java type checking procedure to
an Android program to attach Java types to the
abstract syntax tree. Second, it collects all classses
declared and referred in the program and all pro-
gram points, i.e., program points for object creation
sites. Third, it initializes field and method typings
for the classes and program points by annotating
the Java types with program point set variables
and effect variables. Fourth, it generates subtyping
constraints and activation constraints on the vari-
ables by applying the typing rules to each method
typing. Fifth, it solves the constraints to produce
a solution (mapping of the variables onto ground
program point sets and effects) that completes the
field/method typings. The method typings thus
computed allow the analyzer to compute the effect
of each class in the Android program, which is our
goal.

Note that the analyzer deals not only with the
subtyping constraints as in [8], but it also must in-
troduce a new form of constraints Intent{S} = ¢
for each use of primStartActivity(...) in an An-
droid program. We call this new form an ac-
tivation constraint. Solving each activation con-
straint is to generate a new subtyping constraint
S <: F(C,r.,intent) whenever a new class C be-
comes belong to the effect of this intent type S
(effect(S)). Having all the generated subtyping con-
straints will enforce the condition of (T-prim-1).

An example of an application of our analysis sys-
tem is given as follows. First, we apply the stan-
dard Java type checking procedure to an Android
program to attach Java types to its abstract syn-
tax tree. For example, let us take as an example
one in Figure 1, 2, and 5. The Android analyzer
will eventually enrich the Java types with program
points according to the well-typedness of Android
programs.

Second, the analyzer scans the Android program
to collect from it all classes and all object creation
sites. For example, two universes of classes and

14

program points for the Android program are {Main,
Game, Help, Score, Activity, Intent, String} and
{rl, r2, r4, r5, r7, r8, r10, r11, r12, rl4, r15,
T167 T18a 1”19, Tmain, Tgame, Thelp, Tscores Tactim'ty}-
The program points are associated with the lines
for occurrences of “new Intent()” and string literals
like “Main”, or with the line “C' z = new C(),” in
(launch) for each activity class. The analyzer also
constructs a string table) from the collected string
literals, e.g., Q(r5) = {“Game”}.

Third, the analyzer initializes field and method
typings by annotating the Java types with program
point set and effect variables, X;s and E;s. For
example,

o F(Intent,r4,target) = String{X;}

e M(Intent,r4, setTarget)
= String{ X2} 1, void{}

o M(Main, rmain, onClick)
= int{ X3} 22 void{}

o M(Activity, rmain, start Activity)
= Intent{X,} Ls, void{}

o F(Activity, rgame, intent) = Intent{Xs}

In field and method typings, we group triples,
(class, program point, field) or (class, program
point, method), as this: each program point is an
object creation site where we know the class name,
and the preliminary Java type checking lets us know
which fields and methods each class has and inher-
its.

Fourth, the analyzer applies our typing rules
to the body of each method mentioned in the
method typings to verify that the Android pro-
gram is well-typed. This derivation will gener-
ate some constraints to resolve. For example, to
have M (Main, rmqin, onClick) as in the third step,
we should derive {this : Main{rmain},button :
int{X3}} > e : void{}, Ey for the method body e,
resolving all including some from Line 4-6 as,
String{ X2} B, void{} <: String{rs} EEN void{},
Intent{X,} Ls, void{} <: String{rs} SN void{},
Intent{X4} = Eﬁ, E,UEs C EQ, and Es C E3.

Note that a new form of the constraint
Intent{S} = ¢, read as intents of type Intent{S}
activating classes in ¢, is introduced to enforce the
Android invariant in (T-prim-1). In the next step,
solving this new constraint will generate an extra
constraint as Inmtent{X4} <: Intent{Xs}, to pass

each intent of type Intent{X,} to the field intent of
type Intent{ X5} in Game that the intent activates.
To guarantee the well-formedness of field and
method typings, it is enough to introduce a subtyp-
ing constraint between the method types for each
pair of a method and the overriden method.
Lastly, the analyzer solves the con-
straints by the conventional algorithm. The
least solution of the constraints above is
X1 =Xy ={rs}, Xa=X5={ra}, B1 =Es={},
Es = E; = Eg = {Game} C E5. Therefore, the
analyzer detects that Main may activate Game.

15

