
1/26

2019 Brazilian Symposium on Formal Methods (SBMF)

A Polymorphic RPC Calculus

Kwanghoon Choi

Chonnam National University, Republic of Korea

November 28, 2019

(Joint work with James Cheney, Simon Fowler, and Sam Lindley,
University of Edinburgh, UK)

2/26

Introduction
For a web system, a server program and a client program are
developed separately but needed to be tested/maintained together.

Tierless programming languages for client-server model such as Web
I Programmers can write client and server expressions in a single

program without worrying about complex communications

I Compilers will automatically slice the program into two parts
which run on the server and on the client, respectively.

3/26

Introduction (Cont.)
1. The RPC calculus λrpc : the simple semantics foundation for the
tierless programming languages (Cooper&Wadler, 2009)

2. The typed RPC calculus λtypedrpc : location information such as
client and server in types (Choi&Chang, 2019)

3. The polymorphic RPC calculus λ∀rpc : polymorphic locations (This
paper and its extension)

(*) Dynamic check Location type Slicing
RPC always (untyped) yes

Typed RPC never monomorphic loc. yes
Poly. RPC never/only for poly loc. polymorphic loc. yes

(*): Dynamic location checking on local/remote procedure calls

cf. The other tierless PLs: Eliom, Hop, ML5, Ur/Web, and so on.

4/26

The RPC calculus λrpc (Cooper&Wadler, 2009)
The simple semantics foundation for the tierless programming
languages using λ-applications for remote/local procedure calls

fun main() client { authenticate () }

fun authenticate () server {
var creds = getCredentials("Enter name:passwd > ")
if (creds=="ezra:opensesame") { "The secret document" }
else { "Access denied" }

}

fun getCredentials(prompt) client {
(print(prompt); read)

}

5/26

The RPC calculus λrpc (Cont.)
A call-by-value λ-calculus with location annotated λ-abstractions
I λax .N : λ-abstractions that must run at location a

I M ⇓a V : A term M at location a evaluates to V .
Location a, b ::= c | s

Term L,M,N ::= V | L M
Value V ,W ::= x | λax .N

Evaluation
(Abs)

λbx .M ⇓a λbx .M

L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V
(App)

L M ⇓a V

Note that every procedure call should do a dynamic location check
if it is a remote procedure call or not.

6/26

The typed RPC calculus λtyped
rpc (Choi&Chang 2019)

Location-annotated function types A a−→ B

(1) Every λ-abstraction of type A
a−→ B runs at location a.

Type A,B ::= base | A
a−→ B

I (λsf . (λsx .x) (f M)) (λcy . (λsz .z) y)

Well-typed where f : A
c−→ B

I (λcf . f M) (if · · · then λcx.M1 else λsy.M2)

Ill-typed because neither f : A
c−→ B nor f : A

s−→ B

(2) A typing judgment, Γ `a M : A, says:
I A term M at location a has type A under a type environment Γ

7/26

The typed RPC calculus λtyped
rpc (Cont.)

The key idea: A refinement of the lambda application typing w.r.t.
the two locations a and b

Γ `a L : A
b−→ B Γ `a M : A

Γ `a L M : B

Our analysis using caller location(a) and callee location(b):
I a = b : L M is a local procedure call
I a = c and b = s : L M is an RPC from the client to the server
I a = s and b = c : L M is an RPC from the server to the client

By the type soundness, it is guaranteed that every remote
procedure call thus analyzed statically will not be changed into any
local procedure calls in runtime.

8/26

The typed RPC calculus λtyped
rpc (Cont.)

A slicing compilation of λtypedrpc into λcs .

Γ `a L : A
b−→ B Γ `a M : A

Γ `a L M : B

Caller(a), Callee(b) λtypedrpc λcs Procedure call
a = b L M L(M) Local (c→c or s→s)

a = c and b = s L M req(L,M) Remote (c→s)
a = s and b = c L M call(L,M) Remote (s→c)

For example, req(V,W), can be implemented by HTTP request
while call(V,W) can be implemented by HTTP response.

In λcs , no dynamic checking on locations to make a decision about
local/remote procedure calls is required in run-time.

9/26

The typed RPC calculus λtyped
rpc (Cont.)

A slicing compilation example of λtypedrpc into λcs .

(λsf . (λsx .x) s3(f c1c)) s1(λcy . (λsz .z) s2y)

⇒

φc : main = let r3 = reqs1(clo(g3, {}), clo(g5, {})) in r3
g2 = {f7} λcz10. let y9 = f7 z10 in ret(y9)
g5 = {} λcy . let r14 = reqs2(clo(g4, {}), y) in r14

φs : g1 = {} λsx . x
g3 = {} λsf . let x5 = (let r11 = callc1(clo(g2, {f }), c) in r11) in

let r6 = clo(g1, {}) s3 x5 in r6
g4 = {} λsz . z

10/26

Motivation

The typed RPC calculus only uses monomorphic locations c and s,
and so it does not support polymorphic location functions.
I For example, mappoly cannot be written in λtypedrpc .
I Instead, we should write mapclient and mapserver separately.

Some limited forms of polymorphic locations have already been
used in Links and Eliom. But there is no semantics foundation yet.

Even after polymorphic locations are introduced, we still want to
identify local/remote procedure calls statically.

11/26

Motivation (Cont.)
Our approach: Parametric location polymorphism
I Location abstraction ‘Λl .M’ where l is a location variable.

poly = (Λl .λl f .λlxs. · · ·) : ∀l .(A l−→ B)
l−→ ([A]

l−→ [B])

I Location application ‘M[Loc]’ where Loc is a location
constant, a, or a variable, l .

poly [c] = (λcf .λcxs. · · ·) : (A
c−→ B)

c−→ ([A]
c−→ [B])

12/26

A technical problem
In the presence of location variables, the previous key idea in λtypedrpc

might not work so well as:

Γ `l1 L : A
l2−→ B Γ `l1 M : A

Γ `l1 L M : B

⇒ Two location variables l1 and l2 could not be compared easily to
determine statically if L M is local or remote procedure calls.

Two approaches to polymorphic locations
I A static approach: A monomorphization translation into λtypedrpc

[This paper, SBMF 2019]
I A dynamic approach: An extended client-server calculus with

location polymorphic applications, gen(Loc, f , arg) [Extension]

13/26

A solution for λ∀rpc and its slicing compilation
(1) Polymorphic locations are supported by a translation into
monomorphic ones

How? by interpreting
I location abstraction as a pair of client/server instances, and
I location application as a projection from the pair

For example,
id = Λl .λlx .x ⇒ [[id]] = (λcx .x , λsx .x)

id [c] ⇒ π1([[id]])

id [s] ⇒ π2([[id]])

(2) After the translation, the existing λtypedrpc slicing compilations
can be fully utilized.

14/26

Our contribution: λ∀rpc
A polymorphic RPC calculus as a conservative extension of λtypedrpc

I A polymorphic RPC calculus that supports a parametric
polymorphism over locations

I A monomorphization translation of the polymorphic RPC
calculus into the typed RPC calculus

I Type soundness of the type system and the type/semantics
correctness of the translation

15/26

Part I: A polymorphic RPC calculus λ∀rpc
Location a, b ::= c | s

Loc ::= a | l
Term L,M,N ::= V | L M | M[Loc] | M[A]
Value V ,W ::= x | λLocx .N | Λl .V | Λα.V

Evaluation
(Abs)

λbx .M ⇓a λbx .M

L ⇓a λbx .N M ⇓a W N{W /x} ⇓b V
(App)

L M ⇓a V

(Labs)
Λl .V ⇓a Λl .V

M ⇓a Λl .V
(Lapp)

M[b] ⇓a V {b/l}

cf. (Tabs) and (Tapp)

16/26

A type system for the polymorphic RPC calculus
Location a, b ::= c | s

Loc ::= a | l

Type A,B ::= base | A
Loc−−→ A | ∀l .A | α | ∀α.A

Typing rules
Γ(x) = A

(T-Var)
Γ `Loc x : A

Γ{x : A} `Loc M : B
(T-Abs)

Γ `Loc′ λLocx .M : A
Loc−−→ B

Γ `Loc L : A
Loc′−−→ B Γ `Loc M : A

(T-App)
Γ `Loc L M : B

Γ, l `Loc V : A
(T-Labs)

Γ `Loc Λl .V : ∀l .A
Γ `Loc M : ∀l .A

(T-Lapp)
Γ `Loc M[Loc ′] : A{Loc ′/l}

cf. (T-Tabs) and (T-Tapp)

17/26

Properties of the polymorphic type system

Type soundness for the polymorphic RPC calculus
I For a closed term M, if ∅ `a M : A and M ⇓a V ,

then ∅ `a V : A.

The polymorphic RPC calculus can be viewed as a conservative
extension of the typed RPC calculus.
I Regardless of the introduction of polymorphic locations, every

remote procedure call identified statically will remain as RPC
during evaluation.

18/26

Part II: A monomorphization translation of λ∀rpc into λtyped
rpc

A basic idea: location abstraction as a pair of client/server
instances, and location application as its projection

Translation: types
[[base]] = base

[[α]] = α [[∀α.A]] = ∀α.[[A]]

[[A
a−→ B]] = [[A]]

a−→ [[B]] [[∀l .A]] = [[A{c/l}]]× [[A{s/l}]]

Translation: terms
[[x]] = x [[λax .M]] = λax .[[M]]

[[L M]] = [[L]] [[M]]

[[Λα.V]] = Λα.[[V]] [[M[B]]] = [[M]][[[B]]]

[[Λl .V]] = ([[V {c/l}]], [[V {s/l}]])

[[M[c]]] = π1([[M]]) [[M[s]]] = π2([[M]])

19/26

Example (1)
The identity function:

[[∀l .∀α.α l−→ α]] = ([[(∀α.α l−→ α){c/l}]], [[(∀α.α l−→ α){s/l}]])
= ([[(∀α.α c−→ α)]], [[(∀α.α s−→ α)]])

= (∀α.[[(α c−→ α)]], ∀α.[[(α s−→ α)]])

= (∀α.[[α]]
c−→ [[α]], ∀α.[[α]]

s−→ [[α]])

= (∀α.α c−→ α, ∀α.α s−→ α)

[[Λl .Λα.λlx .x]] = ([[(Λα.λlx .x){c/l}]], [[(Λα.λlx .x){s/l}]])
= ([[Λα.λcx .x]], [[Λα.λsx .x]])

= (Λα.[[λcx .x]], Λα.[[λsx .x]])

= (Λα.λcx .[[x]], Λα.λsx .[[x]])

= (Λα.λcx .x , Λα.λsx .x).

20/26

Example (2)
A map function of type ∀l .(A l−→ B)

l−→ ([A]
l−→ [B]):

letrec map = Λl .λl f .λlxs.Ml in · · ·

where MX
def
== case xs of {[]⇒ []; (y : ys)⇒ f y :: map[X] f ys}

[[map]] = ([[(λl f .λlxs.Ml){c/l}]], [[(λl f .λlxs.Ml){s/l}]])
= ([[λcf .λcxs.Mc]], [[λsf .λsxs.Ms]])

= (λcf .[[λcxs.Mc]], λsf .[[λsxs.Ms]])

= (λcf .λcxs.[[Mc]], λsf .λsxs.[[Ms]]).

where
I [[map[c]]] in [[Mc]] is translated as π1([[map]]), and
I [[map[s]]] in [[Ms]] is translated as π2([[map]]).

21/26

Example (3)
A map function of type ∀l1.∀l2.∀l3.(A

l3−→ B)
l1−→ ([A]

l2−→ [B]):

letrec map = Λl1.Λl2.Λl3.map0 in · · ·

where map0 = λl1f .λl2xs. Ml1l2l3

[[map]] is translated as
(

([[map0{c/l1, c/l2, c/l3}]], [[map0{c/l1, c/l2, s/l3}]]),
([[map0{c/l1, s/l2, c/l3}]], [[map0{c/l1, s/l2, s/l3}]])

)
,(

([[map0{s/l1, c/l2, c/l3}]], [[map0{s/l1, c/l2, s/l3}]]),
([[map0{s/l1, s/l2, c/l3}]], [[map0{s/l1, s/l2, s/l3}]])

)

The monomorphization translation could generate many instances
in theory, but the first map function would be common in practice.

⇒ The dynamic approach can solve the problem at the cost of
passing locations and checking them in run-time.

22/26

Properties of the monomorphization translation

Type correctness of the translation
I For a closed term M, if ∅ `a M : A in λ∀rpc then
∅ `a [[M]] : [[A]] in λtypedrpc .

Semantic correctness of the translation
I For a closed term M, if ∅ `a M : A and M ⇓a V in λ∀rpc , then

[[M]] ⇓a [[V]] in λtypedrpc .

23/26

Part III: A slicing compilation

After the monomorphization translation, λ∀rpc terms will become
λtypedrpc terms.

Then the existing slicing compilation for λtypedrpc can be reused with
no modification.

In summary, λ∀rpc is a complete RPC calculus because
I it supports polymorphic location programming, and
I it supports a slicing compilation into the client-server calculus.

24/26

Extension: A dynamic approach to λ∀rpc
Instead of translating away all location abstractions and
applications, the client-server calculus is extended to support them.

A new client-server calculus λgencs to support location abstractions
and applications by dynamically passing locations in runtime
I λcs : f (arg), req(f , arg), call(f , arg)

I λgencs = λcs + gen(Loc, f , arg)

The dynamic semantics of gen(Loc ′, f , arg) at Loc : it behaves as
one of the three procedure calls, chosen by Loc and Loc ′.

Caller(Loc), Callee(Loc ′) λgencs Procedure call
Loc = Loc ′ f (arg) Local (Loc →Loc)

Loc = c and Loc ′ = s req(f , arg) RPC (Loc→Loc’)
Loc = s and Loc ′ = c call(f , arg) RPC (Loc’→Loc)

25/26

Extension: A dynamic approach to λ∀rpc(Cont.)
A slicing compilation: every application L M in λ∀rpc is simply
compiled into gen(Loc ′, L,M) in λgencs

Γ `Loc L : A
Loc′−−→ B Γ `Loc M : A

Γ `Loc L M : B

Each instance of gen(Loc ′, L,M) at Loc can be specialized before
runtime into
I L(M) if Loc = Loc ′

I req(L,M) if Loc = c and Loc ′ = s
I call(L,M) if Loc = s and Loc ′ = c

Otherwise ((Loc = l or Loc = l ′) and Loc 6= Loc ′), unspecialized.

Regardless of the introduction of dynamic operations on locations,
every remote procedure call identified statically will remain as RPC
during evaluation.

26/26

Conclusion
The polymorphic RPC calculus that provides a parametric
polymorphism over locations
I A static approach using the monomorphization translation
I A dynamic approach using the location-passing λgencs

