
Compiling Lazy Functional Programs Based on
the Spineless Tagless G-machine for the Java

Virtual Machine

Kwanghoon Choi, Hyun-il Lim, and Taisook Han

Department of Electrical Engineering & Computer Science,
Korea Advanced Institute of Science and Technology, Taejon, Korea

{khchoi,hilim,han}@cs.kaist.ac.kr

Abstract. A systematic method of compiling lazy functional programs
based on the Spineless Tagless G-machine (STGM) is presented for the
Java Virtual Machine (JVM). A new specification of the STGM, which
consists of a compiler and a reduction machine, is presented; the compiler
translates a program in the STG language, which is the source language
for the STGM, into a program in an intermediate language called L-code,
and our reduction machine reduces the L-code program into an answer.
With our representation for the reduction machine by the Java language,
an L-code program is translated into a Java program simulating the
reduction machine.

The translated Java programs also run at a reasonable execution speed.
Our experiment shows that execution times of translated benchmarks
are competitive compared with those in a traditional Haskell interpreter,
Hugs, particularly when Glasgow Haskell compiler’s STG-level optimiza-
tions are applied.

1 Introduction

The motivation to compile functional languages for the Java Virtual Machine
(JVM) [4] comes from the mobility of being able to run the same compiled code
on any machine with a JVM, and the potential benefits of interlanguage working
with Java. For implementors, the fact that every JVM is equipped with a built-in
garbage collector may draw their attention. As a method of functional language
implementations, this subject may be an interesting exploration of the strange
nexus of functional languages, byte coded virtual machines, and object oriented
programming.

Our object is to develop a lazy functional language compiler based on the
Spineless Tagless G-Machine (STGM) for the JVM. The reason for using the
abstract machine is that it is the state of the art in lazy abstract machine and
many optimizations are available for its source language, the Shared Term Graph
(STG) [7][8].

There have already been two similar attempts to do this by Tullsen [9] and
Vernet [10]. They have tried to translate an STG program directly into a Java

H. Kuchen and K. Ueda (Eds.): FLOPS 2001, LNCS 2024, pp. 92−107, 2001.
 Springer-Verlag Berlin Heidelberg 2001

STG-to-L-code

Java

STGM

compiler

L-code

L-machine

STG

Answer JVM

compiler
L-code-to-Java

Fig. 1. A Two-Level Translation Scheme

program. Since the STG is simply a functional language, it is the lower level
implementation decisions that make the abstract machine spineless and tagless.
Hence, in the direct translations, the issues in implementing the STGM are
forced to blend with the ones in the representation with Java codes. Besides, both
researchers describe their translation methods informally with several examples.
For some thing, like tail recursion, it is not clear how they implemented it.

In this study, we develop a two-level translation scheme: the first phase
for compiling the STG language into an intermediate language called L-code
(lambda code) and the second phase for representing the L-code language with
the Java codes, as shown in Figure 1. The L-code is designed to specify precisely
the behavior of STG programs with respect to the STGM. Each instruction of
the language materializes explicitly the operations on closures, a register file, a
stack, or a heap, which may be derived from the intended meaning of the STG
language, so it can be directly mapped onto some Java statements. A basic unit
of L-code instuctions is clearly identified in the structure of L-code programs, so
it can be directly mapped onto exactly one class in Java. Every L-code program
will reflect whole aspects necessary for the mapping. With this intermediate lan-
guage, the translation issues can be separated from the representation ones, and
each specific matter can be concentrated on in a modular way. For each level, a
concrete compilation rule is given, and it is perfectly reproducible. Based on this
scheme, we have developed an LFL-to-Java compiler. For five initial benchmarks,
performance is very promising.

The contributions of our study are as follows:

– A systematic method of mapping the STGM onto arbitrary machines by the
STG-to-L-code compiler and the reduction machine is provided (Section 2).

– The representations necessary for the mapping from L-code to Java are de-
termined, and an L-code-to-Java compiler is presented (Section 3 and 4).

– The performance of the Java programs produced is measured (Section 5).

After surveying related works in Section 6, we conclude in Section 7.

2 The Spineless Tagless G-machine

In this section, the STGM is described by four components: the STG language,
the L-code, an STG-to-L-code compiler, and the L-machine.

93Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

2.1 Source Language

The STGM treates the STG language as its source language. The syntax of our
STG language is as follows:

x, y, z, w variable
v ::= λx.e | c x value

e ::= x0 x | let bind in e | case e of λz.alts expression
b ::= v | e bound expression
π ::= u | n update flag

bind ::= x
π
= b binding

t ::= c | λ | default tag
alts ::= alt alternatives
alt ::= c x→e | default→e alternative

decl ::= T ci ni type declaration
prg ::= decl, let bind in main program

The notation objn denotes obj1 ... objn for n ≥ 0. All bound expressions are
syntactically divided into either weak head normal form (Whnf) v or non-Whnf
e. Every binding has a update flag π to determine whether the value of a non-
Whnf is shared or not. In case expression, the z is a bound variable that is bound
to some resulting value of its case scrutinee e. The symbol λ as a tag over lambda
abstractions is distinguished from constructor tags c, and the symbol default is
considered as a special tag for convenience. An STG program consists of a let
expression and type declarations that define tags and arities of constructors. The
full detail can be found in Peyton Jones’s paper [7]. An example codelet is as
follows:

let s
n
= λf g x. let a

u
= g x in f x a in ...

2.2 Target Language

The L-code is determined as the target language. The L-code is a kind of higher-
order assembly language in which binding relationships in the source phrase are
represented using those in the λ-term, as introduced by Wand [12].
x,y,z,w,t,s register
l label
C ::= let l = C in C L-code

| JMPC x | JMPK x y t | CASE t t→〈l, x0 x〉
| GETN (λx.C) | GETNT (λx.λt.C) | GETA (λ〈l, x0 x〉.C)
| PUTARG x C | GETARG (λx.C) | ARGCK n Cmp C
| PUTK 〈l, x〉 C | GETK (λ〈l, x〉.C) | REFK (λx.C)
| SAVE (λs.C) | DUMP C | RESTORE s C

| PUTC x
π
= 〈l, x〉 C | GETC x (λ〈l,w〉.C) | UPDC x 〈l,w〉

| PUTP 〈l, x〉 (λy.C) | STOP x

94 K. Choi, H.-I. Lim, and T. Han

A register is an identifier used in L-code. A label l is uniquely given in let
blocks for a sequence of L-code instructions. An L-code program for a given STG
program will be a nested let expression. The meaning of each L-code instruction
is precisely defined by the reduction machine shown in the next section.

The purpose for the introduction of L-code is to identify explicitly every op-
eration performed in the STGM by each instruction. This enables us to show
our compiler with clearly set out compilation rules as will be shown. The com-
plete specification using L-code for the STGM is also helpful to implement our
compiler accurately because it specifies precisely how the STGM is to be imple-
mented. The STG language itself has an operational reading so that it is not
impossible to translate the STG language directly into Java, but the language
leaves unspecified quite a few things for the implementation of the STGM.

2.3 L-machine

The L-machine is defined as a set of reduction rules for L-code as shown in
Figure 2, and it uses runtime structures as follows:

〈l, ρ〉 closure
ρ ::= x environment
µ ::= µ0 | µ[x 7→ x] | µ[x 7→ l] | µ[t 7→ t] | µ[s 7→ s] register file
s ::= s0 | x s | 〈l, ρ〉 s stack
h ::= h0 | h[x 7→ 〈l, ρ〉] | h[l 7→ C] heap

The reduction machine is pattern-driven; a reduction rule that matches the
pattern of some current state is selected and applied. Usually, a state has the form
of C µ s h. A register file µ is a mapping of registers into addresses, labels, tags,
or stacks. Note that an address is represented by a variable. An environment ρ is
a sequence of addresses. A closure 〈l, ρ〉 consists of a label l and an environment
ρ. A stack s is a sequence of addresses and closures. A heap h is a mapping
of addresses into closures and labels into L-codes. Here, µ0, s0, and h0 are an
empty register file, stack, and heap respectively.

In order to give readers intuition, we give a short informal explanation about
the behavior of L-machine for each instruction: the JMPC x makes a tail call to
the heap-allocated closure at the address stored in x. The JMPK x y t makes a
tail call to the stack-allocated closure of the label stored in x, passing the address
stored in y and a tag stored in t to the closure. The CASE t ti→〈li, x0 xi〉 selects
a matching alternative of ti and jumps to the instructions of the label li, passing
the addresses stored in x0 and xi. The GETN, GETNT, and GETA receive the
addresses passed by JMPC, JMPK, and CASE, respectively. The PUTARG inserts
the addresses of some arguments at the top of a stack and the GETARG deletes
them. The ARGCK n Cmp C checks the availablility of n arguments on stack.
Then, it jumps to C if all n arguments are available, otherwise it jumps to Cmp

in order to make a partial application. The PUTK, GETK, and REFK manipulate
stack-allocated closures, while PUTC, GETC, UPDC, and PUTP work with heap-
allocated closures. The SAVE, DUMP, and RESTORE control a stack, and the
STOP x stops the reduction machine yielding an answer.

95Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

(let li = Ci in C) µ s h ⇒ C µ s h[li 7→ Ci]

(STOP x) µ s h ⇒ (µ(x), h)
(JMPC x) µ s h ⇒ h(l) µ(x) s h θ(x, l, ρ)1

(GETN (λx.C)) x s h ⇒ C µ0[x 7→ x] s h
(JMPK y x t) µ s h ⇒ h(µ(y)) µ(x) µ(t) s h
(GETNT (λx.λt.C) x t s h ⇒ C µ0[x 7→ x, t 7→ t] s h

(CASE t ti→〈li, x0 xi〉) µ s h ⇒ h(lj) 〈lj , µ(x0)µ(x)i〉 s h if ∃j.µ(t) = tj
⇒ h(ld) 〈ld, µ(x0)µ(x)d〉 s h otherwise2

(GETA (λ〈l, x0 x〉.C) 〈l, x0 x〉 s h ⇒ C µ0[x0 7→ x0, x 7→ x] s h
(GETARG (λxn.C)) µ (xn s) h ⇒ C µ[x 7→ x] s h

(PUTARG x C) µ s h ⇒ C µ (µ(x) s) h
(ARGCK n Cmp C) µ (xm 〈l, ρ〉 s) h ⇒ C µ (xm 〈l, ρ〉 s) h if m ≥ n

⇒ Cmp µ (xm 〈l, ρ〉 s) h otherwise
(GETK (λ〈l, x〉.C)) µ (〈l, x〉 s) h ⇒ C µ[x 7→ x] s h

(PUTK 〈l, x〉 C) µ s h ⇒ C µ (〈l, µ(x)〉 s) h
(REFK (λx.C)) µ (〈l, ρ〉 s) h ⇒ C µ[x 7→ l] (〈l, ρ〉 s) h
(SAVE (λs.C)) µ s h ⇒ C µ[s 7→ s] s h
(DUMP C) µ (〈l, ρ〉 s) h ⇒ C µ 〈l, ρ〉 h
(RESTORE s C) µ s h ⇒ C µ µ(s) h
(GETC x (λ〈l,w〉.C)) µ s h ⇒ C µ[w 7→ w] s h θ(x, l, w)

(PUTC x
π
= 〈l,w〉 C) µ s h ⇒ C µ′ s h[x∗ 7→ 〈l, µ′(w)〉] µ′ =µ[x 7→ x∗]3

(UPDC x 〈l,w〉 C) µ s h ⇒ C µ s h[µ(x) 7→ 〈l, µ(w)〉]
(PUTP 〈li, x0〉n (λy.C)) µ (xm 〈l′, ρ〉 s) h n>m
⇒ C µ[y 7→ y∗] (〈l′, ρ〉 s) h[y∗ 7→ 〈lm+1, µ(x0)xm〉]

1. θ(x, l, ρ) iff h(µ(x))=〈l, ρ〉 where µ and h are given on each context
2. default→〈ld, x0 xd〉 is selected
3. x∗ means x is a fresh heap address

Fig. 2. Reduction Rules of L-machine

An example of reduction is shown below:

(GETN (λz.GETC z (λ〈ls, 〉.ARGCK 3 Cmp Cr))) z (f g x s0) h
⇒ (GETC z (λ〈ls, 〉.ARGCK 3 Cmp Cr)) µ0[z 7→ z] (f g x s0) h

where h(z) = 〈ls, 〉
⇒ (ARGCK 3 Cmp Cr) µ0[z 7→ z] (f g x s0) h

where Cr ≡ GETARG (λf g x.(let la = Cain C1))
⇒ (GETARG (λf g x.(let la = Cain C1))) [z 7→ z] (f g x s0) h
⇒ (let la = Cain C1) µ0[z 7→ z, f 7→ f, g 7→ g, x 7→ x] s0 h

where C1 ≡ PUTC a
u
=〈la, g x〉 (PUTARG x a C2), C2 ≡ JMPC f

⇒ (PUTC a
u
=〈la, g x〉 (PUTARG x a C2)) µ0[z 7→ z, ..., x 7→ x] s0 h[la 7→ Ca]

⇒ (PUTARG x a C2) µ0[z 7→ z, ..., x 7→ x, a 7→ a] s0 h[la 7→ Ca, a 7→ 〈la, g x〉]
where a is a fresh heap address

⇒ (JMPC f) µ0[z 7→ z, ..., x 7→ x, a 7→ a] (x a s0) h[la 7→ Ca, a 7→ 〈la, g x〉]

96 K. Choi, H.-I. Lim, and T. Han

Eventually, the L-machine will produce an answer (x, h), if it exists, in which
x is an address of some value and h is a final status of the machine’s heap.

2.4 Compiling STG Programs

In order to compile STG programs, some auxiliary syntactic elements are needed:
the partial applications (pap w0 w), the indirection (ind w), the standard con-
structors (c w), selection continuations (sel λz.alts), the update continuation
(upd w1 w2), and the halt continuation (halt).

Our STG compiler is presented in Figure 3. Notice that a set of free vari-
ables in some syntactic element is annotated as a prefix of the element, such as
{w}.λx.e, for convenience; {wn} is considered as {w1, ..., wn}. Such annotation
is assumed to be calculated on the fly whenever needed. Notice also that symbol
tables τ are used in compilation rules. A symbol table τ is a mapping of variables
into registers. Similarly, τ0 is an empty symbol table.

τ ::= τ0 | τ [x 7→ x] symbol table

As shown in Figure 3, our compiler is composed of five kinds of compilation
rules: B for bound expressions, E for expressions, A for alternatives, C for con-
tinuations, and X for some auxiliary expressions. The P rule receives an STG
program and produces an L-code program in the form of nested let expressions
that would be flattened by hoisting transformation.

Note that, according to the compilation rules, all let-bound Cs are closed and
may be hoisted out to the top level without difficulty. The hoisted version will
form a single-level let expression, in which any let-bound C contains no other
let expression. An example of compiling an STG program is shown below:

let lupd = ... in

let ls = B[[{}.λf g x. let a
u
= g x in f x a]] n ls in ...

= let lupd = ... in
let ls = GETN (λz.GETC z (λ〈ls, 〉.ARGCK 3 (...)(GETARG (λf g x.

let la = GETN (λz.GETC z (λ〈la, g x〉.SAVE (λs.PUTK 〈lupd, z s〉
(DUMP (PUTARG x (JMPC g))))))

in PUTC a
u
=〈la, g x〉 (PUTARG x a (JMPC f))))))

in ...
From the above example, we get its hosisted version as follows:

let lupd = ...
ls = GETN (λz.GETC z (λ〈ls, 〉〉.ARGCK 3 (...)(GETARG (λf g x.

PUTC a
u
=〈la, g x〉 (PUTARG x a (JMPC f))))))

la = GETN (λz.GETC z (λ〈la, g x〉.(SAVE (λs.PUTK 〈lupd, z s〉
(DUMP (PUTARG x (JMPC g)))))))

in ...
Let C be obtained from compiling an STG program. It will be reduced by

applying the reduction rule ⇒, starting from C µ0 s0 h0.

97Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

B[[{w}.λxn.e]] π l =GETN (λz.GETC z (λ〈l,w〉.ARGCK n

(PUTP 〈lpap,i, z〉n (λp.REFK (λy.JMPK y p λ)))
(GETARG (λx.E[[e]] τ0[w 7→ w, x 7→ x]))))

B[[{w}.c w]] π l =X[[{w}.c w]] l
B[[{w}.e]] u l =GETN (λz.GETC z (λ〈l,w〉.SAVE (λs.PUTK 〈lupd, z s〉

(DUMP (E[[e]] τ0[w 7→ w])))))
B[[{w}.e]] n l =GETN (λz.GETC z (λ〈l,w〉.E[[e]] τ0[w 7→ w]))

E[[x0 x]] τ =PUTARG τ (x) (JMPC τ (x0))
E[[case e of {w}.λx.alts]] τ= let lsel = C[[{w}.sel λx.alts]] lsel

in PUTK 〈lsel, τ (w)〉 (E[[e]] τ)
where lsel fresh

E[[let xi
πi={wi}.bi in e]] τ = let li = B[[{wi}.bi]] πi li (bi 6≡c y)

in PUTC xi
πi= 〈li,wi〉 (E[[e]] τ [xi 7→ xi])

where li≡ lc and wi≡τ [xi 7→ xi](y) if bi≡c y
li fresh and wi≡τ [xi 7→ xi](w) otherwise

A[[{w}.c x→e]] l =GETA (λ〈l, z w〉.GETC z (λ〈lc, x〉.E[[e]] τ0[w 7→w, x7→x]))
A[[{w}.default→e]] l =GETA (λ〈l, z w〉.E[[e]] τ0[w 7→ w])

C[[{w1, w2}.upd w1 w2]] l =X[[{w1, w2}.upd w1 w2]] l

C[[{w}.sel λw0.alti]] l = let li = A[[alti]] li
in GETNT (λw0.λt.GETK (λ〈l,w〉.CASE t ti→〈li,w0 wi〉))
where li fresh, alti ≡ {wi}.ti...→ ...

C[[{}.halt]] l =X[[{}.halt]] l

X[[{w0, w}.pap w0 w]] l =GETN (λz.GETC z (λ〈l,w0 w〉.PUTARG w (JMPC w0)))
X[[{w}.ind w]] l =GETN (λz.GETC z (λ〈l,w〉.JMPC w))
X[[{w}.c w]] l =GETN (λz.REFK (λx.JMPK x z c))
X[[{w1, w2}.upd w1 w2]] l=GETNT (λz.λt.GETK (λ〈l,w1 w2〉.

RESTORE w2 (UPDC w1 〈lind, z〉 (JMPC z))))
X[[{}.halt]] l =GETNT (λz.λt.GETK (λ〈l, 〉.STOP z))

P [[decl, e]] = let lpap,m = X[[{wm}.pap wm]] lpap,m (m ≥ 1)
lind = X[[{w}.ind w]] lind

lupd = X[[{w1, w2}.upd w1 w2]] lupd
lhalt = X[[{}.halt]] lhalt
lc = X[[{wn}.c wn]] lc (T c n ∈ decl)

in PUTK 〈lhalt, 〉 (E[[e]] τ0)

Fig. 3. Compilation Rules for the STG Language

3 Representation

From now on, we will concentrate on the development of an L-code-to-Java
compiler. In this section, the method with which the elements in the L-machine

98 K. Choi, H.-I. Lim, and T. Han

is represented in Java language is explained. In the next section, the compiler is
defined, based on the representations.

3.1 Closure

The class Clo is a base class that captures common elements among closures.
It has a public member variable ind that is initialized to itself, and an abstract
member function code().

public abstract class Clo {
public Clo ind = this;
public abstract Clo code();

}
Every closure, e.g. of label l, is represented by a class that extends the base

class by adding some member variables as its free variables and overriding the
code() of the base class as follows:

public class Cl extends Clo {
public Object f1, ... , fn;
public Clo code() { ... }

}
Note that member variables are declared as type Object, which is the super-

class of all classes in Java. Whenever items specific to some inherited class, such
as accessing member variables in the class, are needed, the Object class can be
cast into an appropriate class in our compilation scheme.

3.2 Runtime System

Our runtime system is a class G that equips static variables node, tag , loopflag,
sp, bp, and stk.

public class G {
public static Object node;
public static int tag ;
public static boolean loopflag;

public static int sp, bp;
public static Object[] stk;

...
}

The node variable G.node and the tag variable G.tag are used for passing
the address x of a heap-allocated closure and the tag t respectively, as shown in
the reduction rule:

(GETNT (λx.λt.C)) x t s h ⇒ C µ0[x 7→ x, t 7→ t] s h

99Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

A register file does not require any gadgets. Instead, the mapping by the register
file is simply resolved by the scope rule in Java languages. A stack is repre-
sented by a big array G.stk of type Object, and G.sp and G.bp point to the
top and bottom elements of the top portion of the stack respectively. A heap is
represented by the internal heap provided by the JVM.

Note that the stack represented by an array has to be carefully handled. First,
after an object is deleted from the top of a stack, the deleted entry of the object
must be filled with null in order to inform the JVM that the object in the entry
may be unnecessary. Second, an array of type Object can contain only values
of any classes (or reference data type [3]), but the insertion of primitive values
of types such as int and boolean will cause type violation at compile-time. This
prevents the passing of unboxed arguments that are represented by primitive
values. Instead, we pass them through global registers which are represented by
static variables of appropriate primitive types.

3.3 Updating

In conventional machines, updating is achieved by directly overwriting a value
at a given address. However, the JVM provides no way to construct one object
directly on top of another. Therefore, updates must be managed in an alternative
way. To do this, a special class Ind is introduced.

public class Ind extends Clo {
public Clo code() { return this.ind; }

}
Whenever any non-Whnf is allocated, an object of Ind class is created to-

gether and its ind field is set to point to the non-Whnf. Later, at the time the
non-Whnf is updated with a value, the ind field is given the value. Refer to the
compilation rule for PUTC and UPDC in Section 4.

Note that every object representing a thunk is reachable only through an
additional indirection object of the class Ind in this implementation. This indi-
rection cannot be easily removed if a garbage collector does not treat it specially
as in the conventional implementations. Although it is not possible to build up a
chain of indirections in this implementation, even one-lengthed chains may cause
a space leak. Probably, all the approaches in compiling lazy functional languages
for the JVM are expected to suffer from this problem since it is not possible to
interact with the built-in garbage collector of the JVM in general.

3.4 Tail Call

The STGM mostly transfers control in tail calls. Every tail call can be imple-
mented by a single jump instruction on conventional machines. Since no tail call
instruction is provided in the JVM, they must be simulated by a tiny interpreter
as follows:

public static void loop (Clo c) { while(loopflag) c =c.ind.code(); }

100 K. Choi, H.-I. Lim, and T. Han

Every sequence of L-code instructions ends with one of JMPK, JMPC, and
CASE, according to our compilation rule shown in Figure 3. The three instruc-
tions are translated into Java statements that return an object to which control
is transferred. After the return, control will reach the assignment statement in
the body of the while loop of the above interpreter, and the interpreter will
call the object’s code() if loopflag is true. Here, the loopflag is a static boolean
variable to make the STGM go or stop.

4 Compilation

Our compiler receives a hoisted version of L-code program, and generates Java
classes using compilation rules for L-code instructions shown in Figure 4. Ba-
sically, our compilation scheme considers each closure as one class, which has
member variables as the closure’s free variables and has one method that simu-
lates the closure’s instructions.

Recall that a hoisted version of L-code program forms a single-level let ex-
pression containing let bindings l = C. By hoisting transformation, each C con-
tains no inner let expression. Hence, a simple driver is needed to generate a class
for each binding.

The driver may introduce member variables of the class from the relevant
free variables obtained by analyzing the C. For convenience’s sake, the STG-to-
L-code compiler is assumed to annotate them to the binding like l = {w}.C, so
the driver will use the annotation to make the member variables. The body of
code() in the class will be filled with the Java statements generated by applying
our L-code-to-Java compiler to the C in the binding.

Our compiler neatly maps registers used in L-code into some variables in Java
codes. Each register will be accessed by its name, rather than by some offset as
in conventional implementations. Accessing variables by names is much better,
as it does not require costly array accesses.

In general, for bound variables x in some L-code ... (λx. ...), local variables x
of type Object are declared in J rules. Sometimes, it is not necessary to declare
such local variables, for example, as in the rule for GETA. The reason is that the
required local variables are already declared. According to the rule for CASE,
Java codes generated from this instruction are combined with those generated
from alternatives, though they are not in the same closure in terms of L-code.
Since free variables that occur in the alternatives must be declared in the closure
in which the CASE resides, the free variables in the alternative can be accessed
from the preceding declaration by the scope rule in Java language without any
additional declaration as in GETA.

For SAVE and RESTORE, the base pointer G.bp is stored and restored instead
of an entire stack, which is a well-known technique explained by Peyton Jones
[7]. Note that, in the case of SAVE (λs.C), J declares a variable s of type int as
the bound variable s because it will hold the value of G.bp.

Due to space limitations, we omit discussion of some details of the L-code-to-
Java compiler, including unboxed values and primitives. We also omit discussion

101Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

J [[JMPC x]] = G.node =x; return (Clo)x
J [[JMPK x y t]] = G.node =y; G.tag = t; return (Clo)x
J [[GETN (λx.C)]] = Object x =G.node; J[[C]]
J [[GETNT (λx.λt.C)]] = Object x =G.node; int t=G.tag ; J[[C]]
J [[GETA (λ〈l, x w〉.C)]] = J[[C]]
J [[PUTARG xn C]] = push xn; ... push x1; J[[C]]
J [[GETARG (λxn.C)]] = Object x1,...,xn; pop x1; ... pop xn; J[[C]]
J [[PUTK 〈l, xn〉 C)]] = Cl o=new Cl(); o.f1 =x1; ... o.fn =xn; push o; J[[C]]

where o fresh
J [[GETK λ〈l, xn〉.C)]] = Object o; pop o;

Object x1=((Cl)o).f1, ... ,xn =((Cl)o).fn; J[[C]]
where o fresh

J [[REFK (λx.C)]] = Object x =G.stk[G.sp]; J[[C]]
J [[SAVE (λs.C)]] = int s=G.bp; J[[C]]
J [[DUMP C]] = G.bp=G.sp; J[[C]]
J [[RESTORE s C]] = G.bp=s; J[[C]]

J [[PUTC xi
πi= 〈li,wi

jmi
〉
n

C]] = ... alloci ; ... assigni
j ; ... J[[C]]

where alloci ≡ Cli xi =new Cli () if πi=n
≡ Ind xi =new Ind(); if πi=u

xi.ind=new Cli ()
assigni

j ≡ xi.fj =w i
j if πi=n

≡ ((Cli)xi.ind).fj =w i
j if πi=u

J [[GETC y (λ〈l, xn〉.C)]] = Object x1 = ((Cl)y).f1; ...; xn = ((Cl)y).fn; J[[C]]
J [[UPDC x 〈l,wn〉 C]] = Cl o=new Cl(); o.f1 =w1; ... o.fn =wn;

((Clo)x).ind=o; J[[C]] where o fresh

J [[PUTP 〈li, y〉n〉 (λx.C)]] = switch(G.sp−G.bp) {
case 0 : Cl1 x =new Cl1(); x.f1 =y; break; ...
case n−1 : Cln x =new Cln(); x.f1 =y;

pop x.f2; ... pop x.fn; break;
} J[[C]]

J [[CASE t ci→〈li, x0 xi〉 default→〈ld, x0 xd〉]]
= switch(t) { ... case ci : J[[Cli]] ... default : J[[Cld]]}

J [[ARGCK n C1 C2)]] = if(n>G.sp−G.bp) then { J[[C1]] } else { J[[C2]] }
J [[STOP y]] = G.loopflag =false; return null;

push X = G.sp++; G.stk[G.sp]=X
pop X = G.sp−−; X =G.stk[G.sp+1]; G.stk[G.sp+1]=null

Fig. 4. Compilation Rules for L-code

of the known-call optimization to pass arguments via some agreed static variables
rather than via the costly stack.

An example of compiling the L-code instructions bound to la presented in
Section 2.4 will be shown as follows. This example shows well the relationship
that a let binding is directly translated into one Java class. Since our STG-

102 K. Choi, H.-I. Lim, and T. Han

to-L-code compiler expresses each closure with a let binding, this example also
shows the direct relationship between a closure and a class.

public class Cla extends Clo { // la =
public Object f1, f2; // {g, x}.
public Clo code() {

Object z = G.node; // GETN λz.
Object g = ((Cla)z).f1; // GETC λ〈la, g x〉.
Object x = ((Cla)z).f2;
int s = G.bp; // SAVE λs.
Clupd

o = new Clupd
(); // PUTK 〈lupd, z s〉

o.f1 = z; o.f2 = s;
G.sp ++; G.stk[G.sp] = o;
G.bp = G.sp; // DUMP
G.sp ++; G.stk[G.sp] = x; // PUTARG x
return (Clo)g ; // JMPC g

}
}

5 Benchmarking

We experiment with five small Haskell programs that have been used by Mee-
han and Joy [5]: fib 30, edigits 250, prime 500, soda, and queen 8. A SUN
UltraSPARC-II workstation with a 296MHz processor, 768Mbytes of memory
and Solaris version 2.5.1 is used. For compilers, GHC 4.04, Hugs98 Feb-2000,
and Sun JIT compiler version 1.2.2 are used. To obtain optimized versions of
STG programs, GHC are executed with -O2 option.

5.1 STG-Level Optimizations

One of advantages in using the STGM is that many STG-level optimizations in
GHC can be exploited freely. Ideally, our implementation can be imagined as a
back end of GHC. In our prototype, our own STG-like functional language is
defined, showing that the language is capable of precisely expressing the opera-
tional behaviors of the STG language in terms of the STGM. We extracted STG
programs by running GHC with the option -ddump-stg from our Haskell bench-
marks. Then the STG programs are semi-automatically modified according to
the syntax of our own STG-like language. The main reason for the modification is
that our implementation covers only a part of the libraries implemented in GHC.
This translation is quite straightforward. Then, the modified STG programs are
compiled into Java programs according to our compilation rules.

5.2 Results

Table 1 compares code sizes in bytes. For GHC, the sizes express the dynamically-
linked executables stripped of redundant symbol table information. For Hugs, no

103Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

Table 1. Code Sizes in Bytes

Pgms GHC JIT:unopt JIT:opt

fib 268,028 24,830 (037 classes) 18,610 (034 classes)

edigits 283,092 113,913 (135 classes) 64,327 (092 classes)

prime 280,248 74,161 (096 classes) 50,025 (070 classes)

queen 274,816 108,705 (134 classes) 75,619 (101 classes)

soda 302,972 335,873 (388 classes) 185,496 (203 classes)

sizes are given, as compiled codes exist only within the develpment environment.
For our compiler, the sizes are obtained by summing up the sizes of class files
produced from each program itself and the runtime system. The number in each
parenthesis is the number of classes. Note that our runtime system consists of 4
classes with 2972 bytes.

Table 2 compares execution times in seconds. Each entry is the sum of user
time and system time. The execution time is measured by UNIX time command;
each benchmark is run five times and the shortest execution time is chosen. For
Hugs, each execution time is calculated by a timer supported in Hugs and it
excludes the time on parsing, type checking, and G-code generation.

5.3 Discussion

According to Table 1, each program consists of relatively many classes, since one
class is generated for each closure. Particularly, the size of the unoptimized soda
program is larger than that of the binary soda program generated by GHC, which
stems from generating more updatable expressions by the naive translation of
the string lists. As Wakeling did in his JFP paper [11], we can similarly reduce
the bytecode size of generated classes by merging classes that have the same
types of fields. By modifying only the L-code-to-Java compiler, we can cut the
bytecode size by half and the number of classes is reduced to about 20 in all
benchmarks.

According to Table 2, the execution times of generated Java programs lie
between those of the relevant programs by GHC and Hugs. First, it is not sur-
prising that the generated Java programs are slower than binary executables by
GHC. The JVM is known to make memory allocation more costly, it ignores
strong typedness of the Haskell programs so that it repeats unnecessary runtime
checks, every tail call must be simulated by a return and a call instead of a single
jump instruction, and the simulated stack incurs unnecessary cost for checking
array out-of-bound index and assigning null after a pop.

Second, the generated Java programs tend to outperform the execution times
in Hugs, particularly when GHC’s STG-level optimizations are applied; in that
case, all programs except soda run faster. In the case of soda, because the
warming-up time of the JVM varies from 0.68 to 0.74 seconds, any generated
Java program for soda cannot run faster than in Hugs. By refining the way
of interaction between a primitive and a case expression in the STG-to-L-code

104 K. Choi, H.-I. Lim, and T. Han

Table 2. Execution Time in Seconds

Programs GHC Hugs JIT:unopt JIT:opt

fib 0.18s 106.48s 25.70s 5.72s

edigits 0.16s 3.10s 9.15s 2.42s

prime 0.14s 3.30s 86.38s 1.97s

queen 0.07s 5.79s 5.35s 2.29s

soda 0.03s 0.41s 2.26s 1.59s

compiler, all the above execution times can be cut down to a half, on average.
These results show that our systematic compiler also generates Java programs
which run at a reasonable execution speed.

The STG-level optimizations by GHC dominantly affect the execution times
of all programs. In the case of prime, they are particularly effective. Its explana-
tion may be given in the aspect of total heap allocation since execution time is
usually affected by the amount of heap allocation in lazy functional languages.
An optimized version of prime allocates 35,061,856 bytes, while unoptimized ver-
sion allocates 2,603,827,792 bytes. The unoptimized prime allocated 74.3 times
more heap objects than in its optimized version. By this observation, we notice
that more reduction in heap allocation tends to affect more reduction in execu-
tion time. This is a reasonable expectation as in conventional implementations,
and we believe this is also true for the implementations on the JVM, particu-
larly because the cost of memory allocation is known to be more expensive in
the JVM than in the conventional machines.

6 Related Works

The previous works based on the STGM are Tullsen [9] and Vernet [10]. As
done in the original paper regarding the STGM [7], both papers explained their
own mapping informally based on examples. With these descriptions, we cannot
reproduce their compilers. Furthermore, we cannot compare the performance,
since no experimental result for performance is provided.

Other works are based on either G-machine or 〈ν,G〉-machine. Wakeling’s
compiler [11] has two distinct features. It employs a list of small local stacks
instead of one single big stack, which comes from a feature of 〈ν,G〉-machine, and
it also generates much smaller number of classes over quite big benchmarks by
efficient representations. The generated Java programs run at competitive speed
with Hugs. Wakeling explained that the size of class files affects performance.
Although we didn’t compare our compiler with his in terms of performance,
our compiler based on the STGM is believed to be advantageous in that it can
exploit STG-level optimizations as well as his idea on the efficient representations
to reduce the size of class files. Further work is required.

Meehan and Joy’s compiler [5] represents functions by methods in a single
class and uses the Java reflection package to access the methods. Their generated
Java programs by the compiler runs slower than with Hugs.

105Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

Recently, we heard that Erik Meijer, Nigel Perry, and Andy Gill are working
on a Java back end for GHC, though no documentation is available for their
work [6].

Some research has been done on compiling strict functional languages for
the JVM. Benton, Kennedy, and Russel have taken with Standard ML(SML) as
their source language, improving performance through extensive optimizations
and providing SML with an interface to Java [1][2]. Their approach is similar to
ours with Haskell.

7 Conclusion and Further Works

In this study, a systematic specification of the STGM is presented by defining
our STG-to-L-code compiler and L-machine. It is a new attempt to describe
the mapping accurately by the provision of concrete compilation rules. It is
compact enough to be presented in a few pages, but exposes every aspect for
the mapping of the STGM. Each instruction of L-code is directly mapped onto
some Java statements, and each let binding identifies all the instructions within
one closure so that the closure is nicely mapped onto one class in Java.

Based on the specification, a concrete compilation rule for the JVM is defined.
In this phase, the goal of implementing the STGM is decomposed into the sub-
goals of implementing L-code instructions. We have defined an L-code-to-Java
compiler with our representation decisions.

Since our approach is based on the STGM, the generated Java programs
are indirectly amenable to the STG-level optimizations in GHC. The initial
performance is measured with five small Haskell benchmarks. Combining the
optimizations, promising results are obtained for the benchmarks.

As a further work, we hope to devise more ingenious Java representation;
our representation scheme is a bit straightforward. Also, it is important to apply
our compiler to bigger benchmarks, and this will give more decisive figures for
performance of the translated Java programs. Finally, we hope to more fully
exploit the features of the two-level translation; one may analyze flow information
in terms of L-code to optimize L-code programs, and one may devise Java-related
optimizations relevant to our compilation scheme. Each work could be done
separately.

Acknowledgment

We thank anonymous referees for their many helpful comments. The first author
also thanks Hyeon-Ah Moon for her encouragement. This work is supported by
Advanced Information Technology Research Center.

References

1. N. Benton and A. Kennedy. Interlanguage Working Without Tears: Blending SML
with Java. In Proceedings of the 4th ACM SIGPLAN Conference on Functional
Prgramming, pages 126–137, 1999.

106 K. Choi, H.-I. Lim, and T. Han

2. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java Byte-
codes. In Proceedings of the 3rd ACM SIGPLAN Conference on Functional
Prgramming, pages 129–140, 1998.

3. M. Campione and K. Walrath. The Java Tutorial (2nd Ed.). Addison Wesley,
March 1998.

4. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification (2nd Ed.).
Addison Wesley, 1999.

5. G. Meehan and M. Joy. Compiling Lazy Functional Programs to Java Bytecode.
Software-Practice and Experience, 29(7):617–645, June 1999.

6. S. L. Peyton Jones. A Java Back End for Glasgow Haskell Compiler. The Haskell
Mailing List haskell@haskell.org (http://www.haskell.org/mailinglist.html), May
2000.

7. S. L. Peyton Jones. Implementing Lazy Functional Languages on Stock Hardware:
the Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–
202, April 1992.

8. S. L. Peyton Jones and A. L. M. Santos. A Transformation-based Optimiser for
Haskell. Science of Computer Programming, 32(1–3):3–47, 1998.

9. M. Tullsen. Compiling Haskell to Java. 690 Project, Yale University, September
1997.

10. A. Vernet. The Jaskell Project. A Diploma Project, Swiss Federal Institute of
Technology, February 1998.

11. D. Wakeling. Compiling Lazy Functional Programs for the Java Virtual Machine.
Journal of Functional Programming, 9(6):579–603, November 1999.

12. M. Wand. Correctness of Procedure Representations in Higher-Order Assembly
Language. In S. Brookes, editor, Proceedings Mathematical Foundations of Pro-
gramming Semantics ’91, volume 598 of Lecture Notes in Computer Science, pages
294–311. Springer Verlag, 1992.

107Compiling Lazy Functional Programs Based on the Spineless Tagless G-machine

	1 Introduction
	2 Spineless Tagless G-machine
	2.1 Source Language
	2.2 Target Language
	2.3 L-machine
	2.4 Compiling STG Programs

	3 Representation
	3.1 Closure
	3.2 Runtime System
	3.3 Updating
	3.4 Tail Call

	4 Compilation
	5 Benchmarking
	5.1 STG-Level Optimizations
	5.2 Results
	5.3 Discussion

	6 Related Works
	7 Conclusion and Further Works
	References

