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ABSTRACT

This paper introduces a novel text-based syntax completion method
that generates a sorted list of syntactic structure candidates for pro-
gram writing. To date, no existing methods for syntax structure
completion have offered candidates with accompanying rank infor-
mation. We developed two key algorithms using LR parsing: one
for collecting and ranking candidates, and another for querying
them. With these algorithms, we gathered ranked candidates from
SmallBasic programs in its community and from C11 programs
in open-source software. We then assessed their effectiveness in
code completion using Microsoft SmallBasic tutorial programs and
the exercises from Kernighan and Ritchie’s C programming lan-
guage book. Our findings revealed that the top ranked candidate
is frequently the correct choice. Furthermore, in over 96% of the
cases, the correct completion is within the top 10 ranked candidates.
This indicates the value of the collected rank information, assist-
ing users in candidate selection during introductory programming
tasks. Moreover, our method exhibits language-parametric char-
acteristics; it can be applied to any programming language with
syntax defined by an LR grammar.
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1 INTRODUCTION

Many integrated development environments (IDEs), such as Vi-
sual Studio Code, provide syntax completion features that ease
the editing process for various programming languages. Devel-
opers of IDEs should prioritize incorporating syntax completion
for each supported language. To make the process more efficient
and cost-effective, it is beneficial to approach this implementation
methodically, guided by a detailed specification.

In this study, we introduce a new text-based syntax comple-
tion technique that produces a ranked list of syntactic structure
suggestions. Figure 1 illustrates an example of programming in
SmallBasic, an educational programming language by Microsoft,
aided by our suggested syntax completion technique. When a user
queries suggestions at the cursor position on Line 4, the editor
prompts a dropdown menu showcasing various syntax completion
options. These suggestions are ranked based on their frequency
in sample programs, which our method employs to gather these
candidates.

Our approach aligns with the existing methods that present a
list of syntax structure completion suggestions [17-19]. This stands
in contrast to identifier completion techniques that recommend
variable or function names [4-6, 15, 16, 20], as exemplified in Fig-
ure 2 for Microsoft SmallBasic. For instance, in the first example
of Figure 1, the top suggestion at the cursor position (Line 4) is an
assignment statement formatted as ID = Expr. Here, the terminal
ID signifies an identifier, the terminal = represents an assignment
symbol, and the non-terminal Expr indicates an expression. Fur-
ther, the third example in Figure 1 delves deeper into the syntax
structures of Expr after users input an identifier, number, followed
by an assignment symbol. In contrast, Microsoft SmallBasic does
not provide any suggestions at the same cursor position until the
user starts typing the initial character n. Only then do suggestions
appear, revealing one variable name, number, and one class name,
Network, both beginning with that character.

Our method equips users with ranking information, making
it more likely for them to select higher-ranked candidates. This
contrasts with the existing methods [17-19], where the sequence of
the suggested candidates is inconsequential. As illustrated in Figure
1, each candidate in the menus is labeled with numbers, indicating
the frequency of each syntax structure candidate’s appearance
in the sample programs under investigation. Later analyses will
demonstrate the utility of this feature for code completion.
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There exists another distinction between our method and the
existing methods [17-19] regarding the collection of candidates and
their ranking information for code completion. Both approaches uti-
lize the LR parsing technique to identify the so-called suffix sentential
forms in computing candidates. Central to the LR parsing technique
is the LR automaton, which, given a state and a lookahead, offers
at most one parsing action. While the existing methods rely ex-
clusively on the LR automaton to derive candidates, our approach
varies. Imagine being provided with a parsing state at a cursor
position for code completion. As the lookaheads remain uniden-
tified, these methods must explore all possible combinations of a
lookahead and a parsing action within the automaton’s state. The
computation of candidates using this strategy commences when
users request code completion.

In contrast, our method leverages both the LR automaton and
sample programs to gather candidates from the programs. Assum-
ing that the examples are syntactically valid and have been suc-
cessfully parsed, the lookaheads for all parsing states in the sample
programs are known. These lookaheads then guide the LR automa-
ton in determining which parsing actions to select next. Our method
simply follows the parsing actions as directed by the lookaheads,
selects the candidates, and tallies them to determine their ranking.

1 number = 100
2 While (number > 1)
3 ITextWindow.WriteLine(number}
4
5 E{ ID=Expr 87168
ID Idxs =Expr 80534
ID.ID (Exprs) 78068 27675
If Expr Then CRStmtCRs More ThanZeroElself
DD =Expr 20356
ID() 16821 8811
For ID = Expr To Expr OptStep CRStmtCRs EndFor
GotoID 2331
While Expr CRStmtCRs EndWhile 1733
ID: 1027

1 number = 100
2 While (number > 1)

3 TextWindow!
4 D (Exprs) (131828

5 EndWhile D=Expr 45876

1 number = 100

2 While (number > 1)

3 TextWindow.WriteLine(number)
4 number =

5 Endwhile |ID 44694

1D.ID ( Exprs ) 42463
NUm 34261
sTR 20111
IDIdxs 8883
DD 6123
(Expr) 3004
- Primary 2564

Figure 1: Syntax structure completion examples for SmallBa-
sic in our system

To our knowledge, no existing methods for syntax structure
completion provide candidates accompanied by ranking informa-
tion. Only a few methods for identifier completion [5, 6, 15] have
previously utilized rankings for that particular objective.
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1 number lee
? While (number > 1)

TextWindow.WriteLine(number)

5 End  No suggestions

1 number 180

2 While (number > 1)

3 TextWindow.Writeline(number)
|

5 EndWZ=: number

@ Network

number

1 108
2 While (number > 1)
Textiindow.|
4 M BackgroundColor Gets or sets the ba.
5 EndWhile® Clear
M CursorLeft
M CursorTop
/ ForegroundColor
P Hide
& Left
) Pause
) PauselfVisible
9 PauseWithoutMessage
P Read
) ReadNumber

number

1 number 1lee
2 While (number > 1)
TextWindow. !'l
P Write Writes text or number to tl
) WritelLine

5 EndwWhile

Figure 2: Identifier completion examples in Microsoft Small-
Basic

A notable technical contribution of this work encompasses two
algorithms using LR parsing. The first algorithm constructs a data-
base from sample programs. This database maps LR states to syntax
structure completion candidates with rankings. The second algo-
rithm identifies matching LR states for a specified cursor position.

Moreover, our proposed method is language-parametric, imply-
ing it can be employed for any programming language, provided
its syntax is definable by an LR grammar. Given that the syntax of
C is represented by an LR grammar, our system can be utilized for
syntax structure completion for C, as illustrated in Figure 4.

Our system comprises an editor and a syntax candidate database
server, as depicted in Figure 3. The database is pre-constructed
using the first algorithm mentioned earlier. While a user is coding
and seeks code completion, the editor employs the second algorithm
to identify a set of LR states for the cursor’s position. In response,
the server provides a ranked list of syntax completion candidates
corresponding to those LR states.

We implemented our method and evaluated it using SmallBasic
and C11 programs. Our analysis encompassed 3,701 SmallBasic
programs totaling 789,023 lines from the Microsoft community and
412 C11 programs accounting for 308,599 lines from open-source
software. Additionally, we prepared two sets of introductory pro-
gramming materials: Microsoft SmallBasic tutorial programs and
exercises from the renowned C programming language book by
Kernighan and Ritchie. We then assessed how our analyzed, ranked
syntax candidates database aids in suggesting syntax completions
when crafting these introductory programs. Our findings revealed
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Parse . Cursor
Map of states | position
parse states
into ranked Syntax complection S
candidates candidates with ranks

Figure 3: Overview of our system

1 #include <stdio.h>
2

3 int main{void) {
4 int lower=0, upper=300, step=20,

5 float fahr=lower, celsius;
L]
T while ( fahr |
8 | option_argument_aexpression_list ) 9712
93 > general_identifier J3325
= 38167
&& inclusive_or_expression 27803
> 25223
[ expression ] 20924
.general_identifier 17382
+ 17214
| 16550
< 15373 v
1 #include <stdio.h>
a2
3 int main{void) {
4 int lower=0, upper=300, step=20;
S float fahr=lower, celsius;
;]
7 while (fahr <= upper) {
8 celsius = (5.0 /9.0) * (fahr - 32.0);
5 |
10 |, 59330 =
1y |} 45745 i
NAME VARIABLE 42357
if | expression ) scoped_statement 24285
{ option_block_item_list } 24104
return option_expression ; 23930
NAME TYPE 5551
i ) scoped_ else scoped_ 5205
case _expression : 4941
break; 3882 -

Figure 4: Syntax structure completion examples for C11 in
our system

that the highest-ranked candidate is frequently the correct choice.
Moreover, the correct completion is among the top 10 ranked candi-
dates in over 96% of instances. These evaluation outcomes suggest
that the compiled ranking data significantly enhances code com-
pletion.

The key contributions of this study are as follows: Firstly, we
developed algorithms using an LR parser to collect and suggest
ranked syntax completion candidates. Secondly, our evaluations
with SmallBasic and C highlighted the importance of the ranking
data in introductory programming. Thirdly, our tool is language-
parametric, allowing automatic ranked syntax completion for any
language defined by an LR grammar.

The structure of this paper is as follows: Section 2 introduces our
system. In Section 3, we review a formal definition for candidates
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and outline two LR parsing-based algorithms. Section 4 presents an
evaluation using SmallBasic and C11 programs. Section 5 offers a
discussion on our study’s results and relevant research. Concluding
remarks are provided in Section 6.

2 OVERVIEW OF OUR SYSTEM

Figure 3 provides an overview of our system. The system operates in
two phases. The collection phase constructs a database from sample
programs, mapping parse states to sets of ranked candidates. The
query phase retrieves a sorted list of candidates based on their
ranks for a parse state corresponding to a given cursor position
being edited. While we will illustrate the underlying principles of
the algorithms used in each phase with an example here, a detailed
explanation of the algorithms will be provided in Section 3.

2.1 Collection and ranking phase

Given a set of syntactically valid sample programs in a particular
programming language, the collection phase is broken down into
three steps: lexing, parsing, and collecting candidates. Figure 5
displays a sample program, written in SmallBasic, an educational
programming language by Microsoft. The table on the left presents
an analysis result from the collection phase for this sample program.

2.1.1
gram

Lexing. In the lexical analysis phase, the Hello World pro-

TextWindow.WritelLine("Hello World")
is tokenized into a stream,
ID . ID ( STR)

as illustrated in Figure 5. The term TextWindow is processed into
an identifier represented by the terminal ID, while a text dot is
interpreted as a terminal dot. Similarly, WriteLine is analyzed like
TextWindow. Open and close parentheses undergo the same proce-
dure as the dot, and the string literal "Hello World" is translated
into the terminal STR. It is worth noting that ID and STR are terminal
names used in a lexical analyzer for SmallBasic grammar. After the
analysis, the derived list of tokens (or terminals) is complemented
by a special token $, indicating the end of tokens, which then feeds
into an LR parser.

2.1.2  Parsing. Our system utilizes LR parsing, a predominant form
of bottom-up parsing [1]. Here’s a concise overview of the process:
LR parsing operates through shift-reduce mechanisms. It uses a
stack to store grammar symbols and an input buffer for the pending
parsing string. Initially, the stack starts empty, and the entire input
string awaits parsing in the buffer. The parser progresses left-to-
right over the input, shifting symbols onto the stack. Once the
string segment, denoted as f3, atop the stack is ready for reduction,
it is transformed to the head of the corresponding production rule,
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TextWindow WriteLine ( “Hello World” )
Lexical @ ﬂ @ ﬂ @ @
analysis k4
ID . 1D ( STR ) $(End of token)
CUrsoF @ @ @ ® ® @
positions
LR Shift Shift Shift Shift Shift
parsing SO —= S6 — S30 - S58 — S83 —» S26 S104
Reduce: Primary -> STRl lReduce: ExprStatement -> ID . ID ( Exprs )
S21 sS4
Reduce: UnaryExpr -> Primaryl ift i Reduce: Stmt -> ExprStatement
S20 S3
Reduce: Exprs -> MoreThanOneExprl l Reduce: Prog -> MoreThanOneStmt
S92 S1
| States | Candidates | Ranks | | Cursor positions | States
SO ID.ID (Exprs) 1 1 SO
S6 .ID (Exprs) 1 2 S6
S30 ID ( Exprs) 1 3 S30
S58 (Exprs) 1 4 S58
S83 STR 1 5 S83
S26, S21, S20, ... 6 S26, S21, S20, ..., S92
S92 ) 1 7 5104, S4, S3, ..., S1
5104, S4, S3, ..., S1 - -

Figure 5: Gathering and querying candidates using LR parsing (Hello World program in SmallBasic)

A — f, by substituting § with A on the stack. The cycle repeats
until only the start symbol remains on the stack, and the input
buffer is depleted. This method essentially constructs the inverse of
rightmost derivations, the primary objective of bottom-up parsing.

LR parsing utilizes LR automata derived from LR grammars.
An LR automaton is comprised of states and edges. Each state
represents a set of LR items, while edges signify the act of pushing
a terminal or nonterminal onto a symbol stack. The automaton
transitions between states via shift and reduce actions. A shift j
action pushes the lookahead terminal onto the stack and transitions
to state j. Conversely, a reduce action for A — f pops symbols
corresponding to the production’s right-hand side from the stack,
pushes the left-hand side symbol, and then transitions to another
state.

Let’s delve into how the LR parser processes the Hello World
program depicted in Figure 5. The parsing commences from the
initial state, SO, at cursor position 1. Given the token ID as the
initial lookahead, the LR automaton—derived from the SmallBasic
grammar—guides the parser to shift from state SO to S6, simulta-
neously pushing ID onto the stack. This transition is visualized by
an arrow leading from SO0 to S6, labeled "Shift", with the lookahead,
1D, indicated above this label.

Next, the automaton transitions from S6 to S30 based on the
lookahead, the terminal dot, and adds it to the stack. This shift ac-
tion continues until the parser reaches state S26 at cursor position
6, where it encounters a close parenthesis as the lookahead. At
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this point, it executes a reduce action for STR using the production
Primary — STR, replacing the terminal STR with the nonterminal
Primary on the stack. Without consuming any additional looka-
head, the parser transitions to state S21, still at cursor position
6. Following this, it repeatedly applies reduce actions: the termi-
nal STR is replaced with Primary, the nonterminal Primary with
UnaryExpr, and so on, until the nonterminal MoreThanOneExpr
is replaced with Exprs. Throughout this process, the parser ar-
rives at state S92 without executing any further shift actions. The
automaton now shifts based on the lookahead close parenthesis,
transitioning to state S104 at cursor position 7. With no more tokens
in sight except for the sentinel token signaling the end, the parser,
at state S104, initiates the reduce action for the crucial production

ExprStatement — ID . ID ( Exprs ).

This production is pivotal as it triggers candidate collection from
the sample program. Following a series of subsequent reduce ac-
tions, the automaton reaches state S1. Upon encountering the end
of tokens, it signifies the successful parsing of the program. For a
detailed information into the SmallBasic grammar and its corre-
sponding LR automaton, refer to the companion website [2].

2.1.3  What are candidates? Code completion candidates can be
intuitively defined using the concept of LR items [1]. An LR item
is a production rule with a dot positioned at a certain location on
the right-hand side, represented as A — f - y. If a user writes a
text that ends with the symbols f preceding the dot and requests
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completion suggestions at the immediate subsequent position, y
serves as a candidate to complete f.
Consider state S6, which comprises a set of 14 items:

Q1: [ Stmt —» ID - :, $ ]

02: [ Stmt — ID - :, CR ]

03: [ ExprStatement — ID - = Expr, $ ]

04: [ ExprStatement — ID - = Expr, CR ]

05: [ ExprStatement — ID ID = Expr, $ ]
06: [ ExprStatement — ID ID = Expr, CR ]
07: [ ExprStatement — ID ID ( Exprs ), $ 1
08: [ ExprStatement — ID - . ID ( Exprs ), CR ]
09: [ ExprStatement — ID - ( ), $ ]

10: [ ExprStatement — ID - ( ), CR ]

11: [ ExprStatement — ID - Idxs = Expr, $ ]
12: [ ExprStatement — ID - Idxs = Expr, CR ]
13: [ Idxs — - [ Expr 1, =1

14: [ Idxs — - [ Expr ] Idxs, = 1]

Of all items, items 07 and 08 are pertinent to the cursor position (2)
in the sample program. This position occurs right after the user has
input TextWindow, i.e., ID. At this point, the anticipated subsequent
input from the user is “. WriteLine ( "Hello World" )”. The
ideal completion suggestion should be “. ID ( Exprs )” from the
two items.

Utilizing sample programs to identify candidates for code com-
pletion sets our method apart from previous approaches [18, 19].
Unlike earlier methods that exclusively relied on the LR automa-
ton to deduce code completion candidates, we integrate insights
from sample programs. At the same position by state S6, traditional
methods would generate all conceivable candidates by examining
symbols that can succeed centered dots in each item of the state.
For instance, they might suggest “:” from items 1 and 2, “= Expr”
from items 3 and 4, and “. ID = Expr” from items 5 and 6, among
others.

A significant distinction lies in the nature of the methods em-
ployed. Previous studies [18, 19] are online, computing code com-
pletion candidates on-demand for specific program prefix positions.
In contrast, our approach is offline, collecting candidates for all
potential prefix positions of a particular sample program. We then
construct a database of these pre-ranked candidates, which users
can reference later.

2.1.4  Gathering and ranking candidates. For every candidate y in an
LR item represented as A — f - y, the candidate is collected during
LR parsing. Specifically it is gathered when the parser performs
a reduce action on the production A — fy, following the shift
and goto actions that push the symbols y onto the stack from an
originating parse state containing the LR item.

Consider the Hello World example program. Initially, LR parsing
begins with the initial state SO at cursor position 1. At this point,
the prefix program text fisy is empty, and we simulate a request
to complete this prefix text. Continuing with LR parsing, we push
the symbols yso, which are “ID . ID ( Exprs ), onto the stack.
This process continues until the automation reaches the state S104,
where the parser reduces using the production “ExprStatement
— ID . ID ( Exprs ). Subsequently, we identify this candidate
Yso for the parse state S0. We then insert it into the initially empty
map with the rank 1 as

[ SO+ {ID . ID ( Exprs )'}]

It is important to note that there are multiple reduce actions
prior to reaching the parse state S104, such as “Primary — STR”
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at S26. However, this particular reduce action does not pop all the
symbols that were previously pushed onto the stack down to the
parse state S0. Therefore, it is not the type of reduce action we are
looking for when gathering a candidate for SO.

Having completed the process for the parse state S0, we proceed
to the next state, S6, by simulating a shift action with the lookahead
ID. We then follow a similar procedure for the parse state S6 at
the cursor position 2, as we did for S0. A candidate ygsg, “. ID
( Exprs ), is identified when the automaton reaches S104 and
performs a reduce action with the previously mentioned production.
Consequently, the candidate map updates to:

[ SO—{ID . ID ( Exprs )1},86b—>{. ID ( Exprs )1}]

The process for the cursor positions 3 and 4 are the same as
that for the cursor positions 1 and 2. To further illustrate, consider
the process at cursor position 5, where the parse state is S83. The
automaton executes a shift action using STR, transitioning to state
26. It then carries out a reduce action based on the production
“Primary — STR” This action pops all the symbols, represented
by yss3, STR, down to the state S83. As a result, STR is identified
as a candidate for this state. The candidate map is subsequently
updated as follows:

[ SO {ID . ID ( Exprs )'},S6+{. ID ( Exprs )'},---
$83 > {STR' } ]

This process outlines how the candidates in the left-hand side
table of Figure 5 were assembled.

2.2 Query phase

During program editing, a user may request syntax completion
candidates. The pre-constructed database from the collection phase
can assist the user in finding these candidates. To facilitate this,
the current cursor position where the user made a query must be
translated into the relevant parse states, as illustrated in Figure 3.

During the query phase, the program text up to the designated
cursor position is parsed using the LR parser. Unlike traditional
parsers that return an error, our LR parser is designed to return the
parse state where it halts. For instance, with cursor position 1 in
Figure 5, the parse state SO is returned. If the cursor is at position 3,
it returns the parse state S30. It is worth noting that a single cursor
position can correspond to multiple parse states. For the cursor
positioned at 6, the returned set of states comprises { S26, S21, S20,
... 592 }. The association between cursor positions and LR parse
states is detailed in the right-hand side table of Figure 5.

Upon obtaining the set of parse states corresponding to the
cursor position, the database can be queried to fetch a set of ranked
candidates for each state. The combined results from these sets
will then be relayed to the editor, with candidates presented in
accordance with their ranks.

3 TWO ALGORITHMS

3.1 Specifications of candidates

This section examines the candidate specifications sourced from
the previous research [18, 19]. They introduced the concept of suffix
sentential form, which intuitively represents the remaining portion
of the program text entered up to the cursor position.
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sentential form
y 1

a I

A —rhs

Figure 6: Definition of a simple candidate y

DEFINITION 1 (SUFFIX SENTENTIAL FORMS [18, 19]). Let « be a
sequence of (terminal or nonterminal) symbols. The sequence f is
referred to as a suffix sentential form with respect to a when af is a
sentential form.

Users expect candidates to complete the syntax, meaning these
candidates must close certain syntactic components in the program
text up to the cursor position. Researchers formalized the definition
of a simple candidate based on this observation.

DEFINITION 2 (SIMPLE CANDIDATES [18, 19]). Let « be a prefix of
a sentential form. A sequence of (terminal or nonterminal) symbols y
is a simple candidate with respect to @ when the following conditions
hold.

(1) y is a prefix of a suffix sentential form with respect to c.

(2) A suffix of ay constitutes the right-hand side of a production
A — rhs in the grammar, where |rhs| > |y|! where |s| denotes
the length of a sequence of terminal or nonterminal symbols s.

Intuitively, the first condition implies that when « is a prefix of a
sentential form, y does not introduce any syntax errors. The second
condition indicates that y is a suffix of the right-hand side (rhs) of a
production, such that y aids in closing some syntactic components
in a, as expressed by |rhs| > |y|. These conditions are illustrated in
Fig. 6.

The concept of simple candidates serves as a crucial foundation
but requires further exploration of practical syntax completion
candidates, as discussed in the previous research [19]. A strategy
presented in [19] suggests expanding the idea of simple candidates.
This strategy involves considering a group of simple candidates,
termed as extended simple candidates, which originate from different
parse states but share the same cursor position, as demonstrated in
the given example.

Let us illustrate the concept of extended simple candidates using
an example. In Figure 5, after users input the program text prefix:
WriteLine ( "Hello World"

it is assumed that users request code completion at cursor position
6. They might anticipate a closing parenthesis, ), as a candidate.
However, according to the definition, no simple candidates exist
for the parse state $26, which corresponds to cursor position 6, as
depicted in the figure’s left-hand side table. Instead, it is the parse
state 92 that offers this candidate as a simple candidate. This parse
state is reached by the LR automaton after navigating through
states $26, S21, S20 and so forth. All these parse states, from S26 to
S92, form a sequence of parse states where no shift actions occur.

TextWindow .

1n [18, 19], the original definition of simple candidates was presented with a weaker
condition, represented as | rhs| > |y|. Later this definition was expanded to |rhs| > |y|
and termed as extended simple candidates in [19].
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In simpler terms, no additional tokens are shifted from the token
stream to the stack. These states are deemed equivalent concerning
cursor position 6. The extended simple candidates concept recog-
nizes this distinction by considering all parse states at the same
cursor position. The concept of a set of cursor position equivalent
parse states can be characterized formally by right-end derivations
and reductions [19].

Our algorithms for gathering and querying candidates are de-
signed based on the concept of extended simple candidates.

3.2 Two algorithms for collecting and querying
extended simple candidates

Algorithm 1 Collecting and ranking extended simple candidates

function sampLE(state, logs, map)
candidate <— SAMPLEONE (state, logs)
When map(state) is not defined, let map’ be map with the
correspondence state — {candidate!} added.
Otherwise, let {candidate™} U S = map(state).
Then let map’ be map with the value of map(state) updated
to {candidate"*'} U S.
if logs are SHIFT state’ terminal : logs’ then
return sAMPLE(state’, logs’, map’)
if logs are REDUCE A — RHS : GOTO state’ : logs’ then
return sampLE(state’, logs’, map’)
if logs are ACCEPT : logs’ then
return map’
function saMPLEONE(state, logs)
if logs are REDUCE A — RHS : GOTO state’ : logs’ then
return []
return sAMPLESYMBOLS(state, logs, [])
function saMPLESYMBOLS(state, logs, symbols)
if logs are SHIFT state’ terminal : logs’ then
return
SAMPLESYMBOLS(state’, logs’, symbols - terminal)
if logs are REDUCE A — RHS : GOTO state’ : logs’ then
if |RHS| > |symbols| then
return symbols
else
perform a reduce action with A <~ RHS over symbols
let symbols; be the resulting stack
let stater be the resulting state
return SAMPLESYMBoOLS(statey, logs’, symbolsy - A)
if logs are ACCEPT : logs’ then
return symbols

Our system utilizes two algorithms for candidate collection and
conversion, as depicted in Figure 3. Algorithm 1 is responsible
for preparing ranked candidates in advance, while Algorithm 2 is
triggered whenever users seek code completion.

Algorithm 1 serves as a candidate collection algorithm. It takes
a parse state, a list of LR parse actions denoted as logs, and a
mapping of parse states to sets of ranked candidates as its in-
put. The algorithm then returns an updated mapping as its output.
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Algorithm 2 Computing a set of parse states equivalent to a parse
state state under the corresponding stack stack

function CURRENTSTATES(state, stack)
result < 0
let PRD be the set of all productions A < rhs used in
reduce actions found at the parse state state.
for A < rhs € PRD do
do a reduce action with A « rhs over stack
let stack; be the resulting stack
let state; be the resulting state
result «— result U CURRENTSTATES(statey, stacky)

return {state} U result

It is assumed that all example programs from which candidates
are collected have been successfully parsed by LR parsing. Con-
sequently, each of these example programs is parsed by an LR
parser, producing a list of LR parse actions that concludes with
the ACCEPT action. To start the process, the SAMPLE function is
invoked with the initial parse state SO, the aforementioned list of
parse actions, and an empty map. Each parse action in the logs
adopts the format: SHIFT state lookahead, REDUCE A — RHS fol-
lowed by GOTO state, and ACCEPT. Note that (:) is a cons operator
and [] is the nil for list operations. Within this algorithm, the main
function, SAMPLE, calls SAMPLEONE to acquire a single candi-
date for each parse state, subsequently advancing to the next parse
state.

The auxiliary function SAMPLESY MBOLS retrieves terminals
from shift actions and nonterminals from reduce actions based
on the parse action logs. These are then appended to the variable
symbols using the operator (-) for adding a symbol to the end of a
list of symbols. This procedure persists until either the condition
|rhs| > y specified for candidates is met, or equivalently, when
|RHS| > |symbols| in the algorithm, pinpointing closing candidates.

Algorithm 2 is designed to transform cursor positions into sets
of parse states. Initially, our system employs LR parsing on the
user’s program text, starting from the beginning and extending
to the cursor position, with the objective of identifying a parse
state at which the LR parser gets stuck. Subsequently, Algorithm 2
leverages both the discovered parse state and the stack to deduce a
set of parse states. These derived states correspond to the cursor
position. Note that Algorithm 2 relies on an automaton table. This
table maps pairs consisting of parse states and lookaheads to parse
actions, enabling the algorithm to determine a set of all productions
associated with the reduce actions for a specified parse state.

3.3 Implementation

We have confidence in the correctness of two algorithms that our
system computes ranked syntax completion candidates, as outlined
in the specifications for candidates. While we view the formal
argument as a potential subject for future exploration, our current
focus has been on implementing these algorithms.

Our implementation underwent evaluation using SmallBasic and
C11, both equipped with LR grammars. It is based on a parser builder
tool named YAPB [9]. For developers aiming to create a language-
specific syntax completion tool, the only requirements are writing
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a lexer specification and a parser specification tailored to their
programming language. These specifications were written to align
with YAPB’s interface, as have been demonstrated in [9, 18, 19].
Upon completion of writing the parser specifications, the tool is
furnished with a candidate collector and and a cursor position
converter tailored to the chosen programming language, using LR
parsing.

We have implemented syntax completion systems for SmallBasic
and C11 using YAPB. Supplementary materials, encompassing the
LR grammars, LALR automatons, learning sets of programs, test sets
of programs, syntax completion databases, and evaluation results,
can be found in [2]. Our implementation has adopted the SmallBasic
and C11 grammars in [3, 7]. While it is recognized that adapting the
grammars can enhance the quality of code completion candidates,
as discussed in [19], we chose not to modify the grammars for our
evaluation.

Every candidate that users select might contain one or more
terminals and nonterminals. The presentation of a candidate after its
selection is also crucial, even though our research primarily focuses
on suggesting ranked candidates. For nonterminals, the system
could represent them with triple dots as seen in [24,25], leave some
space, or offer users the opportunity to navigate a tree structure
with the nonterminals as the root based on the grammar. Users can
then expand some nonterminals by corresponding productions. As
for terminals, users might be prompted to input text for them until
the system either successfully validates it against the terminal’s
regular expression or the users decide to discontinue their input.

Our system mandates that each program text prefix remain syn-
tactically valid, a constraint that might be deemed restrictive. Al-
lowing for syntax errors before the cursor, which aligns with more
realistic scenarios, could be feasible if we consider an error recov-
ery mechanism in place of strict LR parsers. Exploring this avenue
would be an interesting future work.

4 EVALUATION

In this study, we evaluate the proposed system to address two
research questions:

e RQ1: Does the system offer candidate suggestions in an order
beneficial for introductory programming?

e RQ2: Is it feasible to implement the system as a language-
parametric tool?

To address the research questions, our methodology involves se-
lecting two programming languages, collecting syntax completion
candidates from existing programs in these languages, choosing
sets of widely recognized introductory programming examples, and
assessing the efficacy of this approach in suggesting candidates and
their order.

We selected Microsoft SmallBasic [10] and C [8], both of which
are defined by LR grammars. Microsoft SmallBasic is designed for
coding education. An LALR(1) parser for SmallBasic, utilizing YAPB,
is available at [2]. C is a widely portable programming language
known for its pointer features. We developed a parser in line with
the C11 standard [8] using YAPB, which is available at [2].

Table 1 provides a summary of the grammatical statistics for the
two programming languages. It details the number of productions
for each language’s grammar, the count of parse states, and the
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dimensions of each LALR(1) automaton based on the quantities of
shift, reduce, and goto actions.

Table 1: SmallBasic and C grammar statistics

| PLs | Microsoft SmallBasic | C11 |
# of prod. rules 61 335
# of parse states 119 529
# of shift/reduce 816 9209
# of goto 222 1907

For each programming language, we prepared both a learning
set and a test set of pre-existing programs. From the learning set,
we established a database by gathering syntax completion candi-
dates, accompanied by their occurrence counts. We assume that
syntax completion candidates derived from the test set represent
the intended code users aim to write at specified cursor positions.

For SmallBasic, we derived our learning set from its community,
comprising 3,701 programs that total 789,023 lines. The test set, on
the other hand, consists of 27 programs spanning 155 lines, sourced
from the renowned Microsoft SmallBasic tutorial. This community
serves as the most extensive repository of SmallBasic programs.
An example of a SmallBasic program, as seen in Figure 1, is drawn
from the tutorial. Regarding C, our learning set originates from
several notable open-source programs: cJSON-1.7.15, lcc-4.2, cdsa
(commit c336¢7e), be-1.07, gzip-1.12, screen-4.9.0, make-4.4, and
tar-1.34. Combined, the sources encompass 308,599 lines. The test
set is an aggregation of 106 programs (totaling 11,218 lines), which
are solutions from the widely recognized Kernighan and Ritchie’s
book on the C programming language. All the programs are in [2].

Table 2: Statistics for the number of typing the down key to
choose syntax structures as desired

SmallBasic

#of | 0 1 2 3 41516 |7 |8|9]10

#ofoces. | 354 | 141 [ 49 [ 29 [ 8 |6 [ 8 |4 [ 1|0 2
C
#of | 0 1] 2| 3] 4 56 7]8]29
#of occs. | 1009 | 465 | 221 | 184 | 144 | 92 | 72 | 49 | 54 | 33
#of | 10 11 12 13 14 15 | 16 | 17 | 18 | 19
# of occs. 32 15 10 1 12 2 0 1 |14]0
#of | 20 21 22 23 24 25 | 26 | 27 | 28 | 29
# of occs. 0 1 1 1 0 0 0 0 0 1

We present a summary of the results from gathering syntax
completion candidates for both SmallBasic and C. For SmallBasic,
the database contains 324 candidates, covering all parse states with
the exception of 38 states that have no candidates. On average, each
parse state has 4.0 candidates with a standard deviation 3.2. The
highest number of candidates for any parse state is 11. In contrast,
the C database features 850 candidates that span all parse states,
barring 336 states without candidates. Each parse state averages 4.4
candidates, a figure close to that of SmallBasic, but with a higher
standard deviation 5.4. The maximum number of candidates for
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any parse states is observed to be 35. Further details can be found
in the respective repositories [2].

There are parse states where no candidates are found, and this
can be attributed to two reasons. First, the example programs in
the learning set may not encompass these parse states. Second, the
definition of simple candidates inherently permits situations where
no candidates are present.

Based on the evidence provided, we can confidently answer Re-
search Question 1 in the affirmative. Two main points support this
conclusion: For SmallBasic, we confirmed that the syntax struc-
tures needed for all 602 cursor positions from the tutorial programs
align with the syntax structure candidate database we compiled
using community-contributed SmallBasic programs. In the case of
C, nearly all syntaxes for the 2,416 cursor positions match those in
the syntax structure candidate database derived from C programs,
which facilitates their use in solution C programs. Notably only
two candidates were absent in the database.

Secondly, our findings showed that the top suggestion in the
syntax candidate list was consistently the most selected choice.
This means users frequently did not need to scroll or use the down
key to navigate the list. This trend was evident in 354 instances
from the tutorial SmallBasic programs and in 1,009 instances from
the C solution programs.

Table 2 categorizes the frequency of pressing the down key re-
quired to locate the desired syntax candidates within the suggested
list for the tutorial SmallBasic programs. On average, finding the
desired syntax candidates for the SmallBasic tutorial programs ne-
cessitated pressing the down key only 0.8 times. For the K&R C
solution programs, this average was slightly higher at 2.15 times.

We also assessed the number of pages flips users needed to find
the desired syntax completion candidates for the test programs. Our
text editor displays a pop up menu showing 10 syntax candidates
per page. For the tutorial SmallBasic programs, users found 99.7%
of the required syntaxes within the first page listing the top 10
candidates. For the C solution programs, this figure stood at 96.2%.
In only 2 cursor positions within the SmallBasic programs were the
desired candidates not found on the first page. Similarly, in 91 out
of 2,416 cursor positions for the C solution programs, the required
candidates were not on the first page.

All these experimental findings confirmed that for typical intro-
ductory programming examples in SmallBasic and C, the desired
syntax candidates can be readily located when organized by candi-
date rankings.

Research Question 2 can be addressed by noting that our imple-
mentation never be dependent on specific programming languages.
Instead, it exclusively uses traces of parse actions and automaton
tables from LR parsing, as evidenced by our evaluations with two
distinct programming languages.

A potential threat to validity exists in our approach: For Small-
basic, we sourced nearly all community programs. In contrast, the
C11 programs we gathered are somewhat arbitrary. The selection
of example programs could influence the code completion results.

5 DISCUSSIONS AND RELATED WORK

The idea of ranking candidates stems from the challenges of using
code completion without ranking. We highlight studies on these
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challenges and then discuss research on ranking, particularly for
identifier completion, and other relevant studies.

5.1 Ranking candidates

Several studies have been conducted on ranking candidates, primar-
ily focusing on identifier completion. These studies quantify the
occurrence of elements, such as identifiers, member names, token
sequences, and combinations of terminal and non-terminal symbols,
in source code repositories like GitHub or the code presently under
development.

A study [15] investigated ranking candidates for identifier com-
pletion using program editing history. This research stored every
editing activity undertaken by a programmer. They highlighted
a common challenge: when writing Java programs in Eclipse, for
instance, the number of candidates for a given identifier prefix can
be overwhelming. These candidates are displayed in an alphabetical
order in a popup window. Consequently, a programmer may need
to scroll extensively to find the expected candidate, which can be
more time-consuming than simply typing out the full identifier. The
situation in syntax completion mirrors this scenario described in
[15], with an excessive number of candidates in certain instances.

Another study by [5] also explored ranking strategies in identi-
fier completion. Similar to [15], they sought solutions to improve
the efficiency of the completion process. Rather than relying on
prefix matching, they introduced subsequence matching. In this ap-
proach, user-input sequences of characters are compared to names
containing those sequences, even if they are non-consecutive. For in-
stance, typing "swu" would yield candidates such as "SwingUtilities"
and "SetWrapGuidePainted". They termed this as an "acronym-
like" input method. The researchers noted that when humans use
acronyms, they follow certain patterns. For instance, typing "swut"
is more likely to refer to "SwingUtilities" than to "ShowFullPath".
They claimed that by leveraging these acronym usage tendencies,
the ranking in identifier completion could be optimized. To achieve
this, they employed a machine learning model, specifically the sup-
port vector machine (SVM), to rank identifiers. They trained the
SVM using a large code base. While their use of a substantial code
base aligns with our methodology, our techniques differ funda-
mentally. Our approach focuses on collecting LR parsing states for
syntax completion, whereas theirs centers on training the SVM for
identifier completion.

Recently a study by [6] delved into method invocation and field
access completion. They introduced what they termed as project-
specific candidates, which they derived through a combination of
heuristics and neural network models. Using open-source Java
programs for their empirical evaluation, they discovered that over
half of member accesses pertained to members of classes declared
within the same project. They delved into a specific scenario where
a user is writing an incomplete Java assignment statement. The
incomplete assignment should have the form “c n = e.” where ¢
represents a class name, n an identifier, and e an expression with a
type corresponding to a class declared within the project. Following
the dot, they proposed member names as completion candidates,
ranking them based on the frequency of each member’s occurrence
within the current project source code.
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In the study by [13], the focus was on synthesizing method calls
to fill holes within programs. They viewed this synthesis as akin
to a natural language processing problem, wherein they calculated
the likelihood of potential token sequences that would form these
method call expressions. Using a comprehensive codebase sourced
from GitHub and other platforms, they ranked candidates according
to their estimated probabilities. Their algorithm incorporated N-
gram analysis, considering the frequency of sequences of N tokens
to aid in candidate determination.

Recently, Svyatkovskiy et al. from Microsoft introduced a system
named IntelliCode Compose [21]. This system leverages GPT-C, a
variant of OpenAI's GPT-2 [12], trained on a vast dataset of program
source code. It is designed to generate sequences of tokens that
form syntactically correct language constructs — like statements
containing local variables, method names, and keywords — for
languages, including C#. Their method is based on the probability
distribution of consecutive token sequences of some fixed length,
wih relatively counting frequencies of token sequences in the code
base. The top sequence, in terms of the probability, is presented as
their suggestion, derived from a model trained on extensive program
source code. It is worth noting the contrast between their system
and ours: while they generate sequences of tokens (terminal sym-
bols), ours generate sequences of both terminal and non-terminal
symbols. This distinction means that in our system, programmers
would have the potential to further expand non-terminal symbols.

5.2 Parser-based code completion

Several studies have explored the use of parsers for code comple-
tion, including identifiers and syntax structures (comprising both
terminal and non-terminal symbols).

A study [22] employed the parser generator ANTLR [11], de-
veloped by Parr, for code completion. This approach allows code
completion functionality to be derived from an ANTLR syntax de-
scription. Some aspects of their generation methodology align with
ours, such as: syntax-based generation, utilizing internal parser
information, and initiating code completion on detecting a syntax
error. However, a key distinction lies in the nature of the completion
candidates: their approach suggests individual tokens, whereas ours
proposes sequences of both terminal and non-terminal symbols.

Some other studies have delved into syntax completion using
a parser. Rekers et al. [14] introduced a substring parser based on
GLR parsing [23]. This substring parser, designed for a language L
defined by any context-free grammar, takes a string s and constructs
a parse tree for a sentential form vsw in L, with v and w serving as
completion candidates for s. Their idea of syntax completion closely
aligns with ours. However, a key distinction is that their completed
strings are strictly sentential forms, while in our approach, they can
be prefixes of sentential forms. This allows for more flexibility in
our method, especially when dealing with partial programs having
nested syntax. Moreover, their research was limited to the Pascal
language and did not have the ranking of candidates.

The study [19] explored the use of an LALR parser to determine
syntactic candidates from a prefix of a valid program. The research
employed an LALR(1) parser generator called YAPB [9]. This tool
creates an LR parser with the capability to access its internal details.
However, the research did not consider ranking the candidates.
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6 CONCLUSIONS

In this research, we introduced a text-based syntax completion
method that produces a ranked list of syntax structure candidates
for coding. We assessed this method using two programming lan-
guages to verify its efficacy in suggesting candidates and prioritizing
them for introductory programming.

In the user’s view, there is considerable scope for further re-
finement and exploration. While the proposed candidates in this
study focus on syntax structures, such as ID ID ( Exprs )
with terminal and nonterminal symbols from the grammar, a more
intuitive presentation would embellish these with actual identifiers
and concrete expressions. For instance, replacing the first identi-
fier with a class name like TextWindow, the second with a function
name like Writel ine, and the expressions with placeholders would
enhance clarity. Displaying nonterminal names directly in the user
interface may not be beneficial. Instead, using a representation like
"..." as shown in [17-19] might be more user-friendly. Only very
high-level nonterminal names such as “expr”, “stmt”, or “decl”
might be readily comprehensible to users.

From a user’s viewpoint, an integrated completion system would
be more intuitive and streamlined. While identifier completion oper-
ates separately from syntax structure completion, they complement
each other, making their integration feasible. Incorporating posi-
tional information could further enhance this combined approach.
For instance, in the given syntax structure of SmallBasic, the initial
instance of ID is intended for class names, not functions or variable
names. Conversely, the subsequent ID should represent a function
name, rather than a class or variable.

At times, users may favor more intricate suggestions. For in-
stance, in a functional programming context, on writing “let val
add = fn x =>", the suggested candidates could extend beyond
merely completing the inner function (fn), to include suggestions
for concluding the encompassing let block, as in expr in expr
end. Our system suggests extended simple candidates. We posit
that simpler suggestions are often be more beneficial than intricate
ones. Furthermore, one could construct intricate suggestions by
combining several simple ones. In this context, offering simpler
candidates might suffice.
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