
A Study on Improving LLM-based Code
Completion Using LR Parsing

Atique Md Monir Ahammod Bin

Department of Artificial Intelligence Convergence

02 June 2025

● Introduction

● Contributions

● Experiment

● Results and Discussion

● Implementation

● Related Work

● Conclusion

Outline

1

Introduction

Code completion or autocomplete is a crucial feature in modern IDEs.

• Suggests code based on current context and language syntax.

• Reduces typing time, detects syntax errors early, and boosts productivity.

• Traditional systems: prefix filtering & static ranking.

• Recent research: LR-parsing-based approaches.

Limitations of previous LR-parsing based approaches:

• Suggest only structural candidates

• Require manual refinement to complete code

• Leads to usability challenges

Introduction

2

LR-parsing Based Code Completion in Microsoft Small Basic [ACM SAC 2024]

Structural
Candidates

Integrate the generative capabilities of Large Language Model (LLM)

• ChatGPT widely used assisting coders in code completion tasks.

• Our approach focuses on fine-grained code completions, not full program generation.

Propose a hybrid method that integrates LR parsing with LLMs.

• Refines structural candidates and suggests textual code.

• Examines whether LLMs benefit from LR structural candidates.

• How to choose LR structural candidate effectively.

• Emerged as a language-agnostic solution.

Introduction

3

Integrating LR-parsing with LLM for Code Completion

Textual
Candidates

Structural
Candidates

Major contributions of our work are as follows:

• Investigates the maximal improvement achievable by LLM using ideal LR structural candidates.

• Propose how to effectively choose LR structural candidates to guide LLMs for better completions.

• VS Code plugins for Small Basic and C with language-agnostic support.

Contributions

4

• Suggest only structural candidates.

• Requiring manual editing, time consuming, and uncomfortable.

Our Previous System: Ranked Syntax-Structure Completion

5

Microsoft Small Basic C11

Structural
CandidatesStructural

Candidates

Structural
Candidates

• Now suggest textual candidates.

• Enhace usability and productivity.

Our Proposed System: LLMs-based Code Completion

6

Microsoft Small Basic C11

Textual
Candidates

Textual
Candidates

Structural
Candidates Structural

Candidates

Two-phase approach: Collecting & ranking phase and Query phase.

Overview of Our System Architecture

7

Sample

ProgramsSample

Programs

Candidate

collection &

ranking

(LR parsing)

Database:

parse states

=> ranked

candidates

Conversion (LR parsing)

Fleshing out

(ChatGPT or

Llama)

Sample

Programs

parse states cursor position

structural

candidates
textual

candidates

No

Yes
Grammar

Inclusion

Grammar

Exclusion

Grammar

Enabled?

Collecting structural candidates &

ranking phase (offline)
Query & textual candidates generation phase (online)

Highlight: The use of ChatGPT or Llama with and without grammar in the system

- It fleshes out the structural candidates to produce textual candidates

- Ex: ID.ID(Expr) → TextWindow.WriteLine(“Hello World”)

Offline Phase

Dataset

8

The test set used for evaluation:

● Microsoft SmallBasic tutorial: 27 programs spanning 155 lines of code.

● The Kernighan and Ritchie’s book on the C programming language: 106 exercise programs totaling

11,218 lines of code.

The training set used for training (candidate collection and built ranked LR structural candidate database):

● SmallBasic community programs: 3,701 programs encompassing nearly 789,023 lines of code.

● C11 open-source projects(cJSON, lcc, bc, gzip, screen, make, tar): 412 programs, totaling approximately

308,599 lines of code.

What are structural candidates ?

• The concept of suffix sentential form intuitively represents the remaining portion of the program text entered up to
the current position [ACM PEPM 2021, Sci. Comput. Program. 2023].

Structural Candidates

9

ExprStatement -> ID . ID (Exprs)

TextWindow .

ID .

TextWindow . WriteLine (“Hello World”)

ID . ID (Exprs)

Collecting a completion here
(Cursor position 3, i.e. S30)

α γ

Cursor position

Structural

Candidate

Suffix Sentential Forms

Test Set

10

A pre-analyzed test set example for Microsoft SmallBasic ‘Hello World’ Program, TextWindow.WriteLine(“Hello World”).

0 ID . ID (Exprs)

1,1: TextWindow

1,11: .

1,12: WriteLine

1,21: (

1,22: "Hello World“

1,35:)

6 . ID (Exprs)

1,11: .

1,12: WriteLine

1,21: (

1,22: "Hello World“

1,35:)

30 ID (Exprs)

1,12: WriteLine

1,21: (

1,22: "Hello World"

1,35:)

58 (Exprs)

1,21: (

1,22: "Hello World“

1,35:)

83 STR

1,22: "Hello World"

Structural Candidate
Parse
State

Textual CandidateLine Number ,
Column Number

92)

1,35:)

Online Phase

Two crucial research questions in this phase:

• RQ1. Do LR structural candidates actually help LLMs?

If so, how much do they improve code completion?

• RQ2. How to choose LR structural candidate effectively?

Structural Candidate Fleshing Out by LLMs

11

Prompt Engineering: Prompt Examples for Small Basic

12

Example of Prompt without Structural Candidate Guidance in Small Basic Language

1: This is the incomplete Microsoft Small Basic programming language code:

2: number = 100

3: While (number > 1)

4: TextWindow.WriteLine

5: ‘next token or line’

6: Complete the ‘next token or line’ part of the code in the Microsoft

7: Small Basic programming language. Just show your answer in

8: place of ‘next token or line’.

Example of Prompt with Structural Candidate Guidance in Small Basic Language

1: This is the incomplete Microsoft Small Basic programming language code:
2: number = 100
3: While (number > 1)
4: TextWindow.WriteLine
5: ‘(Expr)’
6: Complete the ‘(Expr)’ part of the code in the Microsoft Small Basic
7: programming language. Just show your answer in place of ‘(Expr)’.

Prompt Engineering: Prompt Examples for C

13

Example of Prompt without Structural Candidate Guidance in C Language

1: This is the incomplete C programming language code:

2: int main(void)

3: {

4: char s[1000];

5: int i = 0;

6: int loop = 1;

7: ‘next token or line’

8: Complete the ‘next token or line’ part of the code in the C programming

9: language. Just show your answer in place of ‘next token or line’.

Example of Prompt with Structural Candidate Guidance in C Language

1: This is the incomplete C programming language code:

2: int main(void) {

3: char s[1000];

4: int i = 0;

5: int loop = 1;

6: ‘while (expression) scoped_statement’

7: Complete the ‘while (expression) scoped_statement’ part of the code

8: in the C programming language. Just show your answer in place of

9: ‘while (expression) scoped_statement’.

Evaluation Metrics for Code Completion Quality

14

SacreBLEU Score:

• Measures token-level similarity between LLM generated and reference code.

SequenceMatcher Similarity:

• A character-level similarity measure using longest matching subsequences.

• Formula:

ratio = 2 ⋅ 𝑀
𝑇𝐴 + 𝑇𝐵

• Formula:

Evaluation Procedure:

• Automated Prompt Generation: Create prompts using LR structural candidates.

• Code Evaluation: Compare LLM outputs with expected results.

• Systematic Testing: Evaluation across all cursor positions.

Two strategies compared:

• WithIdealGuide: Prompts include ideal LR structural candidate guidance.

• WithoutGuide: Prompts exclude LR structure candidate guidance.

• 7–14% precision gain in ChatGPT with LR candidate guidance.

RQ1: Evaluation and Results

15

Programming
Language

SacreBLEU (%) With-
IdealGuide

SacreBLEU (%)
WithoutGuide

SequenceMatcher (%)
WithIdealGuide

SequenceMatcher (%)
WithoutGuide

Microsoft Small Basic 49.790 40.798 44.703 37.897

C11 28.368 15.472 28.658 15.074

Table 1: Comparative analysis of experimental results: WithIdealGuide and WithoutGuide.

Results:

RQ1: Precision Comparison in Small Basic and C

16

• Consistent precision gains across candidate list lengths with ideal structural candidate guidance.

Figure 1: Precision comparison between the results of WithIdealGuide and WithoutGuide.

Small Basic C

Evaluation Procedure:

• Top 1–3 ranked candidates from prior work often matched correct code.

• Use a pre-ranking database to select top 1–3 candidates for each parser state.

Completion strategies:

1. WithTop1Guide: Only the first ranked structural candidate is used.

2. WithinTop3Guide: The highest-precision candidate is selected from the top three ranked completions.

RQ2: Evaluation and Results

17

Programming Languages Experiment Types SacreBLEU (%) SequenceMatcher (%)

Microsoft Small Basic WithoutGuide 40.798 37.897
WithIdealGuide 49.790 44.703
WithinTop3Guide 45.733 43.897
WithTop1Guide 38.524 37.097

C WithoutGuide 15.472 15.074

WithIdealGuide 28.368 28.658
WithinTop3Guide 26.222 27.810
WithTop1Guide 20.217 20.464

Table 2: Comparative analysis of experimental results
Results:

RQ2: Precision Comparison in Small Basic and C

18

Figure 2: Precision comparison of WithinTop3Guide and

WithoutGuide for different candidate list lengths.

• Precision comparison graph showing that WithinTop3Guide outperforms WithoutGuide in SmallBasic.

Figure 3: Precision comparison of WithinTop3Guide and

WithoutGuide for different candidate list lengths

Small Basic C

Discussion

Discussion: Case Studies on Microsoft Small Basic

19

 Best prediction example in the Microsoft Small Basic experiment.

Parse State: 6 Cursor Position: 5 11

Candidate List: [1: ‘= Expr’, 2: ‘.ID (Exprs)’, 3: ‘[Expr]’, 4: ‘.ID = Expr’, 5: ‘()’, 6: ‘[Expr] Idxs’, 7: ‘:’]

Prompt

1: This is the incomplete Microsoft Small Basic programming language code:

2: number = 100

3: While (number > 1)

4: TextWindow.WriteLine(number)

5: number

6: ‘= Expr’

7: Complete the ‘= Expr’ part of the code in the Microsoft Small Basic

8: programming language. Just show your answer in place of ‘= Expr’.

ChatGPT’s Response WithTop1Guide Actual Candidate

= number / 2 = Expr

Actual Textual Answer

= number / 2

Response Evaluation

SacreBLEU score: 100.0

SequenceMatcher similarity precision: 96.0

Discussion: Case Studies on Microsoft Small Basic

20

Parse State: 11 Cursor Position: 3 1

Candidate List: [1: ‘ID = Expr’, 2: ‘ID.ID(Exprs)’, 3: ‘ID.ID = Expr’, 4: ‘Sub ID CRStmtCRs EndSub’, 5: ‘ID()’, 6: ‘ID

Idxs=Expr’, 7: ‘If Expr Then CRStmtCRs MoreThanZeroElseIf’, 8: ‘For ID=Expr To Expr OptStep CRStmtCRs EndFor’,

9: ‘While Expr CRStmtCRs EndWhile’, 10: ‘ID:’, 11: ‘Goto ID’]

Prompt

1: This is the incomplete Microsoft Small Basic programming language code:

2: number = 100

3: ‘ID = Expr’

4: Complete the ‘ID = Expr’ part of the code in the Microsoft Small Basic

5: programming language. Just show your answer in place of ‘ID = Expr’.

ChatGPT’s Response WithTop1Guide Actual Candidate

number = 100 While Expr CRStmtCRs EndWhile

ID = number * 5

Actual Textual Answer

While (number > 1)

TextWindow . WriteLine(number)

number = number / 2

EndWhile

Response Evaluation

SacreBLEU score: 37.5

SequenceMatcher similarity precision: 33.0

 Worst prediction example in the Microsoft Small Basic experiment.

Discussion: Case Studies on C

21

Parse State: 429 Cursor Position: 7 31

Candidate List: [1: ‘NAME VARIABLE’, 2: ‘CONSTANT’, 3: ‘STRING_LITERAL’, 4: ‘(expression)’, 5: ‘(type_name)cast_expression’, 6: ‘&’,

7: ‘sizeof unary_expression’, 8: ‘sizeof(type_name)’, 9: ‘*’, 10: ‘-’, 11: ‘--unary_expression’, 12: ‘Ị’, 13: ‘++unary_expression’,

14: ‘ builtin_va_arg(assignment_expression, type_name)’]

Prompt

1: This is the incomplete C11 programming language code:

2: int main(void)

3: {

4: int x = 2, y = 3;

5: printf("x: %d, y: %d\n", x, y);

6: int temp; temp = x; x = y; y = temp;

7: printf("x: %d, y: %d\n", x,

8: ‘NAME VARIABLE’

9: Complete the ‘NAME VARIABLE’ part of the code in the C11 programming

10: language. Just show your answer in place of ‘NAME VARIABLE’.

ChatGPT’s Response WithTop1Guide Ideal (Actual) Candidate

y NAME VARIABLE

Actual Textual Answer

y

Response Evaluation

SacreBLEU score: 100.0

SequenceMatcher similarity precision: 1.00

 Best prediction example in the C experiment.

Discussion: Case Studies on C

Parse State: 246 Cursor Position: 9 36

Candidate List: [1: ‘CONSTANT’, 2: ‘(expression)’, 3: ‘NAME VARIABLE’, 4: ‘sizeof unary_expression’, 5: ‘sizeof (type_name)’,

6: ‘(type_name) cast_expression’, 7: ‘*’, 8: ‘Ị’, 9: ‘++ unary_expression’, 10: ‘&’]

Prompt

1: This is the incomplete C11 programming language code:

2: size_t rem = 0;

3: while (size >= 1024 && div < (sizeof SIZES / sizeof *SIZES)) {

4: rem = (size % 1024);

5: div++;

6: size /= 1024; }

7: printf("%6.1f%s ", (float)size +

8: ‘CONSTANT’

9: Complete the ‘CONSTANT’ part of the code in the C11 programming language. Just show your answer in place of ‘CONSTANT’.

ChatGPT’s Response WithTop1Guide Ideal (Actual) Candidate

(SIZES[div-1]>1)?SIZES[div-1] (type_name) cast_expression

:0.1*SIZES[div-1]

Actual Textual Answer

(float)rem

Response Evaluation

SacreBLEU score: 7.6

SequenceMatcher similarity precision: 6.0

22

 Worst prediction example in the C experiment.

Discussion: Analysis on Low Precision

23

 Our system’s low precision results analysis

Numerical Inconsistency

Our system’s selected structural candidate : ID.ID = Expr

System’s response with structural candidate : GraphicsWindow.Height = 150

Actual textual answer : GraphicsWindow.Height = 600

SacreBLEU’s 1-gram precision : 80.0

Inconsistency in Quotation Marks

Our system’s selected structural candidate : EndFor

System’s response with structural candidate : ‘EndFor’

Actual textual answer : EndFor

SacreBLEU’s 1-gram precision : 0.0

Discussion: Impact of the Single Candidate
 Single structural candidate contribution to prediction results in Microsoft Small Basic.

Parse State: 8 Cursor Position: 7 5

Candidate List: [1: ‘ID = Expr To Expr OptStep CRStmtCRs EndFor’]

Prompt

1: This is the incomplete Microsoft Small Basic programming language code:

2: For i = 1 To 5

3: TextWindow.Write("User" + i + ", enter name: ")

4: name[i] = i

5: EndFor

6: TextWindow.Write("Hello")

7: For

8: ‘ID = Expr To Expr OptStep CRStmtCRs EndFor’

9: Complete the ‘ID = Expr To Expr OptStep CRStmtCRs EndFor’ part of

10: the code in the Microsoft Small Basic programming language. Just show

11: your answer in place of ‘ID = Expr To Expr OptStep CRStmtCRs EndFor’.

System’s Response with Guidance
System’s Response without Guidance

i = 1 To 5
TextWindow.Write(name[i] + ", ") i = 1

Endfor

Actual Textual Answer

i = 1 To 5 \n TextWindow . Write (name [i] + ", ") \n EndFor

Result Evaluation
SacreBLEU precision with guidance : 100.0

SacreBLEU precision without guidance : 33.34

24

Candidate list of only one
structural candidate

Grammar incorporation [KISM 2025] :

• Investigated explicit grammar-based guidance.

• No statistically significant improvement.

 Integrate different LLMs [ASK 2025] :

• Evaluated ChatGPT and Llama for

LR-based code completion.

• ChatGPT outperforms Llama.

Discussion: Integrating Grammar and Different LLMs

25

PLs Experiment Types SacreBLEU (%) Without

Grammar

SacreBLEU (%) With

Grammar

SequenceMatcher (%)

Without Grammar

SequenceMatcher (%)

With Grammar

Microsoft Small

Basic

WithIdealGuide 43.856 49.790 42.618 44.703

WithinTop3Guide 44.773 45.733 43.532 43.897

WithTop1Guide 37.905 38.524 36.775 37.097

C11

WithIdealGuide 25.173 28.368 26.537 28.658

WithinTop3Guide 27.385 26.222 28.989 27.810

WithTop1Guide 21.125 20.217 21.547 20.464

Table 4: Impact of grammar provision on code completion accuracy.

Table 5: Experiment results with guidance using different LLMs.

PLs LLM Types SacreBLEU (%) SequenceMatcher (%)

Microsoft Small Basic

ChatGPT 43.856 42.618

Llama 3 29.086 30.374

C11

ChatGPT 25.173 26.537

Llama 3 15.290 16.913

Implementation:
VS Code Extension

Implementation: A VSCode Extension Based on Our Approach

26

Figure 10: VSCode extension workflow diagram

VS Code Extension: Microsoft Small Basic

27

Microsoft Small Basic programming VSCode extension example

VS Code Extension: C

28

C programming VSCode extension example

Related Work

Related Work

29

 LLM-Guided Code Completion Tools:

• VSCode (IntelliCode Compose) [1], JetBrains IntelliJ [2], and GitHub Copilot [3] leverage LLMs for multi-

token/multi lines.

→ Reported Acceptance Rate: 18% (C) to 38%.

• Our method: fine-grained, controlled LLM-based completion.

→ Achieved ~29% accuracy on C11 with multi-line completions.

• Recent frameworks (SynCode) [4] enforce grammar rules in LLM outputs.

→ Our work systematically evaluates grammar provision’s impact on completion accuracy.

 Parser-Based Techniques:

• Studies use ANTLR [5], GLR [6], and LALR parsers [7] for syntax-aware completion.

• Our method generates ranked symbol sequences with sentential form prefixes.

 Candidate Ranking:

• Traditional ranking uses only frequency counts (e.g., GitHub data) or edit history (e.g., Eclipse) [8].

• Our ranking combines symbol frequencies and LLM-based lexeme expansion.

Conclusion

Conclusion:

• Examines the upper bound of improvement in LLM-based code completion.

• How to effectively guide LLMs via ranked structures for better completions.

• VS Code plugins for Small Basic and C with language-agnostic design.

Future Directions:

• More diverse languages & datasets to improve accuracy.

• Evaluate real-world programmer experience.

• Generalized plugin for multi-language support.

• Explore better strategies for applying grammar to the LLM.

Conclusion & Future Work

30

List of Publications Based on Our Work

31

The following publications are based on the research presented in this thesis:

1. Md Monir Ahammod Bin Atique, Hyeon-Ah Moon, Isao Sasano, and Kwanghoon Choi. "Improving LLM-based

Code Completion Using LR Parsing”, Journal of Computer Languages, Elsevier, 2025 [Minor Revisions].

2. Md Monir Ahammod Bin Atique, Kwanghoon Choi, Isao Sasano, and Hyeon-Ah Moon. "Improving LLM-based

Code Completion Using LR Parsing-Based Candidates." In CEUR Workshop Proceedings, vol. 3754, 10th

International Symposium on Symbolic Computation in Software Science (SCSS), Japan, 2024. Available at:

https://ceur-ws.org/Vol-3754/paper01.pdf.

3. Md Monir Ahammod Bin Atique 와최광훈. "LR 파싱을활용한 LLM 기반코드완성에서문법제공비교분석".

2025 한국스마트미디어학회&한국전자거래학회춘계학술대회, 중앙대학교.

4. Md Monir Ahammod Bin Atique 와최광훈. "LR 파싱을이용한이용한 LLM 기반코드완성에서 ChatGPT 3.5와
Llama 3의비교분석". 2025년한국정보처리학회연례심포지엄 (ASK 2025), 경북대학교.

Q & A

Thank You for Listening.

32

Appendix.

33

References

[1] Svyatkovskiy, A., Deng, S.K., Fu, S., Sundaresan, N., 2020. Intellicode compose: Code generation using transformer, in: Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Association for

Computing Machinery, New York, NY, USA. p. 1433–1443. URL: https://doi.org/10.1145/3368089.3417058, doi:10.1145/3368089.3417058.1

[2] Semenkin, Anton, Vitaliy Bibaev, Yaroslav Sokolov, Kirill Krylov, Alexey Kalina, Anna Khannanova, Danila Savenkov et al. "Full Line Code

Completion: Bringing AI to Desktop." arXiv preprint arXiv:2405.08704 (2024).

[3] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian.

“Productivity Assessment of Neural Code Completion”. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine

Programming (MAPS 2022), pages 21–29. https://doi.org/10.1145/3520312.3534864.

[4] S. Ugare, T. Suresh, H. Kang, S. Misailovic, and G. Singh, "Syncode: LLM generation with grammar augmentation," arXiv preprint

arXiv:2403.01632, 2024.

[5] Parr, T., Fisher, K., 2011. LL(*): The foundation of the ANTLR parser generator, in: Proceedings of the 32Nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 425–436. doi:10.1145/1993498.1993548.

[6] Tomita, M., 1985. Efficient parsing for natural language: A fast algorithm for practical systems. Kluwer Academic Publishers. doi:10.1007/ 978-1-

4757-1885-0

[7] Sasano, I., Choi, K., 2023. A text-based syntax completion method using LR parsing and its evaluation. Science of Computer Programming,

102957URL: https://www.sciencedirect.com/science/article/pii/S0167642323000394, doi:https://doi.org/10.1016/ j.scico.2023.102957.

[8] Kersten, M., Murphy, G.C., 2006. Using task context to improve programmer productivity, in: Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, Association for Computing Machinery, New York, NY, USA. p. 1–11. URL:

https://doi.org/10.1145/1181775.1181777, doi:10.1145/1181775.1181777.

34

https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3520312.3534864
https://www.sciencedirect.com/science/article/pii/S0167642323000394

• Collecting candidates using LR parsing
(Hello World program in Microsoft Small
Basic).

• The left table lists viable prefixes,
parser states, predicted candidates,
and ranks.

• The right table maps cursor positions to
parser states.

LR Parsing in Collecting Structural Candidates

35

Viable Prefixes States Candidates Ranks Cursor Position States
𝜖 S0 ID . ID (Exprs) 1 1 S0
ID S6 . ID (Exprs) 1 2 S6
ID . S30 ID (Exprs) 1 3 S30
ID . ID S58 (Exprs) 1 4 S58
ID . ID (S83 STR 1 5 S83
ID . ID (STR S26 6 S26
ID . ID (Primary S21 6 S21
ID . ID (UnaryExp S20 6 S20
... ... 6 ...
ID . ID (Exprs S92) 1 6 S92
ID . ID (Exprs) S104 7 S104
ExprStatement S4 7 S4
Stmt S3 7 S3
... ... 7 ...

Prog S1 7 S1

• Explains structural candidates using the concept of LR items.

• Every LR item is a dotted production, represented as 𝐴 → 𝛽 ⋅ 𝛾

• If a user writes a text ending with the symbols 𝛽 preceding the

dot and requests completion suggestions afterward, 𝛾 can serve

as a structural candidate to complete 𝛽 .

• Consider state S6 with the viable prefix ID in 'Hello World' program.

• TextWindow . WriteLine(“Hello World”)

ID

Structural Candidates Using the Concept of LR Items

36

Cursor position

Suffix Sentential Forms

01: [Stmt → ID ⋅ :, $]

02: [Stmt → ID ⋅ :, CR]

03: [ExprStatement → ID ⋅ = Expr, $]

04: [ExprStatement → ID ⋅ = Expr, CR]

05: [ExprStatement → ID ⋅ . ID = Expr, $]

06: [ExprStatement → ID ⋅ . ID = Expr, CR]

07: [ExprStatement → ID ⋅ . ID (Exprs), $]

08: [ExprStatement → ID ⋅ . ID (Exprs), CR]

09: [ExprStatement → ID ⋅ (), $]

10: [ExprStatement → ID ⋅ (), CR]

11: [ExprStatement → ID ⋅ Idxs = Expr, $]

12: [ExprStatement → ID ⋅ Idxs = Expr, CR]

13: [Idxs → ⋅ [Expr], =]

14: [Idxs → ⋅ [Expr] Idxs, =]

Prompt templates featuring LR structural candidate guidance.

Prompt Engineering: Prompt Templates

37

Prompt Template with Structural Candidate Guidance

1: This is the incomplete {Name Of Programming Language} code:

2: {Program Prefix}

3: {Suggested Structural Candidate}

4: Complete the {Suggested Structural Candidate} part of the code

5: in the {Name Of Programming Language}.

6: Just show your answer in place of {Suggested Structural Candidate}.

Prompt Template without Structural Candidate Guidance

1: This is the incomplete {Name Of Programming Language} code:

2: {Program Prefix}

3: ‘next token or line’

4: Complete the ‘next token or line’ part of the code

5: in the {Name Of Programming Language}.

6: Just show your answer in place of ‘next token or line’.

Evaluation Metrics for Code Completion Quality

38

SacreBLEU Score:

• Measures token-level similarity between generated and reference code.

• Based on n-gram precision (1-gram used in our experiment).

• Calculates how many tokens in the generated output match the reference.

• Includes a brevity penalty to penalize overly short outputs.

• Commonly used for evaluating LLM-generated text across systems.

• Where 𝑝𝑛 is precision of n-grams, BP is brevity penalty.

SequenceMatcher Similarity

• A character-level similarity measure using longest matching subsequences.

• Implemented via Python’s difflib.SequenceMatcher class.

• Computes a ratio between 0 and 1 indicating how similar two sequences are.

• Captures fine-grained textual alignment, even with minor differences.

• Complements token-level metrics by focusing on overall sequence structure.

• Where 𝑀 is the number of matching characters, and 𝑇𝐴 and 𝑇𝐵 are the lengths of two sequences being compared.

Formula:

ratio = 2 ⋅ 𝑀
𝑇𝐴 + 𝑇𝐵

Formula:

• Top 1–3 ranked candidates from prior work often matched correct code, averaging 1.8 for SB and 3.15 for C.

• Use a pre-ranking database to select top 1–3 candidates for each parser state.

• Candidates ranked by frequency of correctness in previous data.

• Four completion strategies:

1. WithIdealGuide: The ideal LR structural candidate from the database is provided in the prompt. Average

precision is computed across all cursor positions using these ideal candidates.

2. WithinTop3Guide: The highest-precision candidate is selected from the top three ranked completions for each

LR parser state. The average of this highest precision value is then calculated for all possible cursor positions.

3. WithTop1Guide: Only the first ranked structural candidate is used, and average precision is determined

across all LR parser states.

4. WithoutGuide: When no candidate was provided and the prompt simply instructed ‘next token or line’.

Selecting Top 3 Candidates: Evaluation Procedure for RQ2

39

Evaluation Procedure for Addressing RQ2: Evaluation

Results

40

Programming Languages Experiment Types SacreBLEU (%) SequenceMatcher (%)

Microsoft Small Basic WithoutGuide 40.798 37.897
WithIdealGuide 49.790 44.703
WithinTop3Guide 45.733 43.897
WithTop1Guide 38.524 37.097

C WithoutGuide 15.472 15.074

WithIdealGuide 28.368 28.658
WithinTop3Guide 26.222 27.810
WithTop1Guide 20.217 20.464

• The precision gap between WithIdealGuide and WithinTop3Guide is much smaller than that between

WithIdealGuide and WithoutGuide, showing the effectiveness of the top-3 strategy.

• WithinTop3Guide achieves 2 to 6 times closer SacreBLEU precision to WithIdealGuide compared to

WithoutGuide, for both Small Basic and C11.

• Selecting and presenting the top 3 structural candidates is a practical and effective strategy for improving

code completion precision in both language datasets.

Table 2: Comparative analysis of experimental results: WithIdealGuide, WithinTop3Guide, WithTop1Guide, and

WithoutGuide.

Precision Comparison Graph: WithinTop1Guide in SB

41

Figure 3: Precision comparison of WithinTop1Guide and

WithoutGuide for different candidate list lengths.

Precision Comparison Graph: WithinTop1Guide in C

42

Figure 5: Precision comparison of WithTop1Guide and

WithoutGuide for different candidate list lengths

Analysis of Low Precision

43

Figure 10: Our system’s low precision results analysis

First Example of Numerical Inconsistency

Our system’s selected structural candidate : MoreThanOneExpr

System’s response with structural candidate : , 10, 50, 100, 150

Actual textual answer : , 10, 100, 100

SacreBLEU’s 1-gram precision : 62.5

Second Example of Numerical Inconsistency

Our system’s selected structural candidate : Number

System’s response with structural candidate : 10

Actual textual answer : 70

SacreBLEU’s 1-gram precision : 0.0

First Example of Inconsistency in Quotation Marks

Our system’s selected structural candidate :)

System’s response with structural candidate : ‘)’

Actual textual answer :)

SacreBLEU’s 1-gram precision : 0.0

Importance of the Top-Ranked Candidate

44

 Higher-quality top-ranked structural candidates lead to better LLM-guided completions.

 Current database is limited to a small open-source set.

 Expanding to a broader, more diverse corpus is expected to improve both structural and textual precision

 How often the first suggested candidate was the correct one?

We have since extracted the relevant statistics:

• Under the WithTop1Guide condition, the top-1 structural candidate led to textually correct suggestions

in 10.8% of cases for SmallBasic, and 3.0% for C11.

• Under the WithTop3Guide condition, the correct textual suggestion appeared within the top 3 in 14.0%

of cases for SmallBasic and 4.4% for C11.

• When guided by the WithIdealGuide setting, these rates increased significantly: 17.9% for SmallBasic

and 9.7% for C11.

• LLMs improve code completion without explicit grammar knowledge.

• LLM-based code completion uses large training data to generate accurate code without needing explicit syntax rules.

• Due to their probabilistic nature, LLMs can sometimes produce inconsistent or arbitrary outputs.

• Does providing explicit grammar-based guidance improve LLM-based code completion?

 A context-free grammar (CFG) or Grammar defines the syntax of a programming language and structures code

completion tasks. CFG includes:

• Terminal symbols: Basic language tokens.

• Nonterminal symbols: Abstract syntactic categories.

• Productions: Rules for forming valid expressions.

• Start symbol: The initial nonterminal for derivations.

 Example: stmt → if (expr) stmt else stmt

shows terminals (if, else) and nonterminals (stmt, expr).

• In this study, Small Basic has 60 production rules; C language has 335.

Grammar Provision in LLM-based Code Completion using LR parsing

45

PLs Microsoft
SmallBasic

C11

Num. of prod. rules 61 335

Num. of parse states 119 529

Num. of shift/reduce 816 9209

Num. of goto 222 1907

Table 3: Grammatical statistics for

Microsoft Small Basic and C

Prompt Templates with and without Grammar

46

Prompt template with grammar

1: {Grammar: Production Rules}

2: This is the incomplete {Name of Programming Language} code:

3: {Program Prefix}

4: {Suggested Structural Candidate}

5: Complete the {Suggested Structural Candidate} part of the code

6: in the {Name of Programming Language}.
7: Just show your answer in place of {Suggested Structural Candidate}.

1: This is the incomplete {Name of Programming Language} code:

2: {Program Prefix}

3: {Suggested Structural Candidate}

4: Complete the {Suggested Structural Candidate} part of the code

5: in the {Name of Programming Language}.
6: Just show your answer in place of {Suggested Structural Candidate}.

Prompt template without grammar

Example Program of Grammar Provision in Small Basic

47

Example of Prompt with Grammar-based Structural Candidate Guidance in Microsoft Small Basic Language:

1: {1: Prog -> MoreThanOneStmt

2: …. ExprStatement -> ID . ID (Exprs)

3: 60: Idxs -> [Expr] Idxs}

4: This is the incomplete Microsoft Small Basic programming

5: language code:

6: number = 100

7: While (number > 1)

8: TextWindow . WriteLine

9: ‘(Expr)’

10: Complete the ‘(Expr)’ part of the code in the Microsoft Small Basic
11: programming language. Just show your answer in place of ‘(Expr)’.

System Response: (number)

Actual Answer: (number)

Example Program of Grammar Provision in C

48

Example of Prompt with Grammar-based Structural Candidate Guidance in C Language

1: {1: typedef_name -> NAME TYPE

2: ….

3: 335: list_eq1_typedef_declaration_specifier -> declaration_specifier list_eq1_typedef_declaration_specifier}

4: This is the incomplete C programming language code:

5: int main(void)

6: {

7: char s[1000];

8: int i = 0;

9: int loop = 1;

10: ‘while (expression) scoped_statement’

11: Complete the ‘while (expression) scoped_statement’ part of the code

12: in the C programming language. Just show your answer in place of

13: ‘while (expression) scoped_statement’.

System Response: while (loop) {char s = getchar ();}

Actual Answer: while (loop) {char s = getchar ();}

Overall Evaluation Results of Grammar Provision

49

PLs Experiment Types SacreBLEU (%) Without

Grammar

SacreBLEU (%) With

Grammar

SequenceMatcher (%)

Without Grammar

SequenceMatcher (%)

With Grammar

Microsoft Small

Basic

WithIdealGuide 43.856 49.790 42.618 44.703

WithinTop3Guide 44.773 45.733 43.532 43.897

WithTop1Guide 37.905 38.524 36.775 37.097

C11

WithIdealGuide 25.173 28.368 26.537 28.658

WithinTop3Guide 27.385 26.222 28.989 27.810

WithTop1Guide 21.125 20.217 21.547 20.464

Highlights:

• SmallBasic: Grammar helps marginally (e.g., SacreBLEU +6%)​

• C11: Mixed results, some worse with grammar​

• Overall: No statistically significant improvement (1~6)

Why no major gains?​

• LLMs already internalize syntactic knowledge (or grammar) from training data.​

• Adding grammar increases prompt length, lead to prompt complexity.​

• Grammar constraints can reduce LLM flexibility.

Table 4: Impact of grammar provision on code completion accuracy.

A Comparative Analysis of ChatGPT 3.5 and Llama 3 in Our Work

50

• Different LLM advancements have greatly improved code completion.

• Compares ChatGPT 3.5 and Llama 3 within an LR parsing-based code completion framework.

• Which model, ChatGPT or Llama, demonstrates better performance in LR parsing-based code generation?

• Used ChatGPT (gpt-3.5-turbo-0125) and Llama 3 (llama-3.1-8b-instant).

Major contribution of this experiment:

• Evaluated LLMs (ChatGPT 3.5 vs. LLaMA 3) for LR-based code completion.

• Model choice significantly affects accuracy.

• ChatGPT outperforms LLaMA in this setting

An Example of Prompt with Different LLMs

51

1: This is the incomplete Microsoft Small Basic programming

2: language code:

3: number = 100

4: While (number > 1)

5: TextWindow.

6: ‘ID(Expr)’

7: Complete the ‘ID(Expr)’ part of the code in the Microsoft Small Basic

8: programming language. Just show your answer in place of ‘ID(Expr)’.

Prompt engineering with ideal structural candidate Example of Prompt with Ideal Structural Candidate Guidance in SB

Example of Prompt with Ideal Structural Candidate Guidance in C Language

1: This is the incomplete C programming language code:

2: int main(void)

3: {

4: char s[1000];

5: int i = 0;

6: int loop = 1;

7: ‘while (expression) scoped statement’

8: Complete the ‘while (expression) scoped_statement’ part of the code

9: in the C programming language. Just show your answer in place of

10: ‘while (expression) scoped_statement’.

Comparative Evaluation of the Example in SB

52

Comparative Evaluation of the Previous Example in Microsoft Small Basic Language Using ChatGPT 3.5 and Llama 3

ChatGPT 3.5 Response: WriteLine(number)

Response Evaluation:

SacreBLEU (%) score: 100

SequenceMatcher(%) similarity precision: 100

Llama 3 Response: TextWindow.WriteLine

Response Evaluation:

SacreBLEU (%) score: 33.333

SequenceMatcher(%) similarity precision: 43.902

Actual Textual Answer: WriteLine(number

Experimental Results Analysis of ChatGPT and Llama in Our Work

53

Table 5: Code completion experiment results with ideal structural candidate guidance using different LLMs.

PLs LLM Types SacreBLEU (%) SequenceMatcher (%)

Microsoft Small Basic

ChatGPT 43.856 42.618

Llama 3 29.086 30.374

C11

ChatGPT 25.173 26.537

Llama 3 15.290 16.913

Higher accuracy with ChatGPT:

• ChatGPT outperforms Llama 3 with approximately 10–15% higher SacreBLEU and SequenceMatcher scores.

• It produces more precise, structurally aligned completions for both Small Basic and C11.

Significance of model selection:

• Model choice plays a crucial role in syntax-aware code completion.

• ChatGPT integrates structural candidates more effectively than Llama 3.

Database

54

smallbasic-syntax-completion-candidates

