
l

ver
Information Processing Letters 87 (2003) 205–211

www.elsevier.com/locate/ip

A type system for the push-enter model✩

Kwanghoon Choi∗, Taisook Han

Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu,
Daejeon 305-701, Republic of Korea

Received 13 February 2002; received in revised form 28 February 2003

Communicated by H. Ganzinger

Keywords:Compilers; Programming languages; Type systems; Higher-order functions; Push-enter model; Typed compilation

1. Introduction apply model (e.g., one for CPS conversion [3]) ne
as
tra-
pes

e

m-
as
is
G
m-
lly

are
rd-
al-
ds

the
val-

eer-
ch-

consider such a dynamic property of the push-enter
own
are

in a
r-
age

de-
tati-
or-
th-
time
ust
indi-

on
n 2.
ate
ign

type
then
ne
ith

erved
Compiling with typed intermediate languages h
many advantages including that the properties of
ditional compilation methods can be specified by ty
and they can be verified automatically in compile-tim
[5].

The push-enter model is an important class of co
pilation methods for higher-order functions, as h
been demonstrated by the ZINC machine (which
used in the OCaml compiler) [4, §2.2] and the ST
machine (which is used in the Glasgow Haskell co
piler) [6, §3.2]. The compilation methods dynamica
arrange arguments passed among functions, which
called with an arbitrary number of arguments acco
ing to the feature of higher-order functions. The ev
apply model is the other class of compilation metho
that statically arranges those arguments.

As far as we know, there is no type system for
push-enter model. Existing type systems for the e

✩ This work was supported by the Korea Science and Engin
ing Foundation (KOSEF) through the Advanced Information Te
nology Research Center (AITrc).

* Corresponding author.
E-mail addresses:khchoi@cs.kaist.ac.kr (K. Choi),

han@cs.kaist.ac.kr (T. Han).

0020-0190/$ – see front matter 2003 Elsevier B.V. All rights res
doi:10.1016/S0020-0190(03)00282-5
model. Even though the push-enter model has its
advantages [4,6], all typed compilation approaches
obliged to use only the eval-apply model (e.g., as
type-preserving compilation [5]) in compiling highe
order functions, which are an indispensable langu
feature.

A type system for the push-enter model should
scribe the dynamic arrangement of arguments s
cally. To design such a type system, it is most imp
tant to design the type of states; all compilation me
ods based on the model use separate states in run
to indicate dynamic argument status. The type m
specify the exact argument status that each state
cates.

In this paper, we first develop a simple compilati
method based on the push-enter model in Sectio
The compilation method uses its own states to indic
dynamic argument status. In Section 3, we des
generic types for the states, and we develop a
system on the basis of these generic types. We
demonstrate how the compilation method is do
within our type system. In Section 4, we conclude w
a discussion of future works.

.

206 K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211

2. Compiling higher-order functions in the
push-enter model

ter
his
ed
lso
er-
er-

ver-
ons

es
tates
di-
g 1

any,

er-
he

ling

iles
tion
tly
e of
nes
r is
an
1).

If so, an applying operation with the argument will be
implicitly done through the corresponding alternative

ion
on
ost.
ut
has

s it
he
ns.

res-
o be
iles
e an
es-

on
CPS
use
ly
em
to

n,
er-
le

es
uld
ing
, a
r-
nd
a
a

A compilation method based on the push-en
model is developed as shown in Fig. 1; we call t
MPS conversion. The other compilation method bas
on the eval-apply model, CPS conversion [1], is a
shown for comparison. The purpose of both conv
sions here is to compile away the feature of high
order functions in source expressions; after con
sion, the feature will not appear in target expressi
any more.

Markers and demarkers, which are our primitiv
for the push-enter model, use tags 0 and 1 as s
indicating dynamic argument status; the tag 0 in
cates that no argument is available and the ta
indicates that one argument is available. Azero-
marker(0〈v〉) carries a continuationv. A one-marker
(1〈v, v′〉) carries an argumentv and another markerv′.
A return-demarker(casev of 0〈x〉 → e) is used to re-
turn values to a continuationx. An argchk-demarker
(casev of 0〈x〉 → e0;1〈x, x ′〉 → e1) is used to check
the existence of an argument and then, if there is
to take it.

For a non-function value like integers, both conv
sions compile it to be returned in the same way. T
MPS conversion uses a return-demarker for compi
non-function values.

For a function value, the CPS conversion comp
it to be returned in the same way as for a non-func
value. The MPS conversion compiles it differen
because, in the push-enter model, the existenc
an argument, i.e., the tag of markers, determi
whether it is returned or not. An argchk-demarke
used for compiling function values to examine if
argument is available (i.e., if the tag of markers is

MPS (push-enter)
❏x❑ = λm.let f = π (x) in f (m)
of the demarker. As a result, the MPS convers
avoids the cost of building closures for the functi
value, while the CPS conversion suffers from the c
It will build closures only when no argument turns o
to be available. In general, the push-enter model
this advantage over the eval-apply model [4,6].

For an application, the CPS conversion compile
for an applying operation to be done explicitly after t
evaluation of the function and argument expressio
The MPS conversion compiles the argument exp
sion with a zero-marker because the expression is t
evaluated without any other argument, and it comp
the function expression with a one-marker becaus
argument is now available from the argument expr
sion.

For a variable, both non-function and functi
values can be bound to the same variable. The
conversion compiles a variable to be returned beca
both kinds of bound values are compiled uniform
to be returned. The MPS conversion compiles th
differently as explained, so care must be taken
compile a variable uniformly. In the MPS conversio
every value is uniformly represented by a mark
handler function and the value itself. For a simp
presentation, a dummy value (fn) is used to fill the
second field in the representation of function valu
since the field is useless; such an untidy thing co
be eliminated by using record types and subtyp
on them. Based on this representation decision
variable is compiled uniformly to select a marke
handler function from a pair bound to the variable a
to invoke the function with a marker. This allows
faithful applying operation with a function bound to
variable in a tail position.

CPS (eval-apply)
❏x❑ = λk.k(x)
1
❏i❑ = fix f (m).casem of

0〈k〉 → k(〈f, i〉)
❏λx.e❑ = fix f (m).casem of

0〈k〉 → k(〈f, fn〉)
1〈x,m′〉 → ❏e❑ m′

❏e1 e2❑ = λm.❏e2❑ 0〈k〉 where
k = λx2.❏e1❑ 1〈x2,m〉

❏i❑ = λk.k(i)

❏λx.e❑ = λk.k(λ(x, k′).❏e❑ k′)
❏e1 e2❑ = λk.❏e1❑ k1 where

k1 = λx1.❏e2❑ k2
k2 = λx2.x1(x2, k)

Fig. 1. Two compilation methods for higher-order functions.

K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211 207

3. A type system for the push-enter model

,
hat

the
s

see

syntax, a sequence of syntactic objectsE is denoted
by E.

ps;
e
llee
is

th

he
nt

is
and
3.1. Source and target languages

The source languageλF is a higher-order, typed
and call-by-value language in a manner similar to t
in [5]:

types t ::= α | int | t1 → t2 | ∀α.t

annotated termse ::= ut

terms u ::= x | i | λ(x : t).e | e1 e2
| Λα.e | e[t]

type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1 : t1, . . . , xn : tn
The static semantics ofλF is shown in Fig. 2

and it consists of the standard inference rules. In
judgments∆;Γ
F e : t , ∆ is a context that contain
the free type variables ofΓ , e, andt ; Γ is a context
that assigns types to the free variables ofe; and t is
the type ofe. The judgment∆
F t asserts that typet
has no free type variable under∆. An empty context
is denoted by∅.

The target languageλM is a pseudo first-orderand
typed language [1,5] with markers and demarkers (
Fig. 3). Each tag in markers has an annotationt . In

(FTV(t) ⊆ ∆)
∆;Γ
F u : t
t

The dynamic semantics ofλM in Fig. 4 is defined
as a relation of terms (⇒), particularly to show the
behavior of markers and demarkers. InλM, functions
do not return values, so function calls are just jum
“→ void” suggests this fact. If control is to b
returned to the caller, the caller must pass the ca
a continuation function for it to invoke. Execution
completed by the construct halt[τ]v, giving a result
value v of type τ . The construct fix abstracts bo
type and value variables, and the corresponding∀ and
→ types are combined. Later,λ[α](x : τ).e, λ(x : τ).e,
and (τ) → void are used whenf or α is unused in
fix f [α](x : τ).e and∀α.(τ) → void.

The static semantics ofλM will be shown later in
Fig. 6. It has quite similar judgments to those in t
static semantics ofλF, except that the new judgme
∆;Γ
M e states no return type sincee never returns
values.

3.2. Typing markers and demarkers

Let us explain three typing problems. First, it
most important to determine the types of tags 0

(Γ (x) = t)

∆
F t ∆;Γ
F u : t ∆;Γ
F x : t ∆;Γ
F i : int

∆
F t1 ∆;Γ,x : t1
F e : t2
∆;Γ
F λ(x : t1).e : t1 → t2

(x /∈ Γ)
∆;Γ
F e1 : t1 → t2 ∆;Γ
F e2 : t1

∆;Γ
F e1 e2 : t2
∆,α;Γ
F e : t

∆;Γ
F Λα.e : ∀α.t
(α /∈ ∆)

∆
F t ∆;Γ
F e : ∀α.t ′
∆;Γ
F e[t] : t ′[t/α]

Fig. 2. Static semantics ofλF.

types τ ::= int | ∀α.(τ) → void | 〈τ1, . . . , τn〉 | m t | v t | r t | ct | fnt

values v ::= x | i | fix f [α](x : τ).e | 〈v1, . . . , vn〉 | 0t 〈v〉 | 1t 〈v1, v2〉 | fnt

terms e ::= let x = v in e | let x = πi(v) in e | v[t](v) | halt[τ]v
| casev of 0〈k : τ 〉 → e

| casev of 0〈k : τ 〉 → e0; 1〈x : τ ′,m : τ ′′〉 → e1

type contexts ∆ ::= α1, . . . , αn

value contextsΓ ::= x1 : τ1, . . . , xn : τn

Fig. 3. Target languageλM .

208 K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211

let x = v in e ⇒ e[v/x]

h a
let x = πi(〈. . . , vi , . . .〉) in e ⇒ e[vi /x]
(fix f [α](x : τ).e)[t](v) ⇒ e[t/α][(fix f . . .)/f, v/x]
case 0t 〈v〉 of 0〈k : τ ′〉 → e ⇒ e[v/k]
case 0t 〈v〉 of 0〈k : τ ′〉 → e0;1〈x : τ ′′,m : τ ′′′〉 → e1 ⇒ e0[v/k]
case 1t 〈v, v′〉 of 0〈k : τ ′〉 → e0;1〈x : τ ′′,m : τ ′′′〉 → e1 ⇒ e1[v/x, v′/m]

Fig. 4. Dynamic semantics ofλM.

τ ≡ τ

τ2 ≡ τ1

τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τ1 ≡ τ ′
1 . . . τn ≡ τ ′

n

∀α.(τ1, . . . , τn) → void≡ ∀α.(τ ′
1, . . . , τ

′
n) → void

τ1 ≡ τ ′
1 . . . τn ≡ τ ′

n

〈τ1, . . . , τn〉 ≡ 〈τ ′
1, . . . , τ ′

n〉

v (int) ≡ int

m t ≡ τ

v (∀α.t) ≡ ∀α.(τ → void) v (t1 → t2) ≡ fnt1→t2

m t ≡ τ1 v t ≡ τ2
r t ≡ 〈τ1 → void, τ2〉

r t ≡ τ

c t ≡ τ → void

Fig. 5. Type equivalence rules.

1 because they substantially affect typing markers and using a zero-marker. The zero-marker may reac

demarkers, which use the tags to control argument

cify
ach

t
s
nts
the

rs.
fy
s of
oup
rn-
up.
med
ers

, it
as-
er-

return-demarker (an argchk-demarker) ifα is instan-
it

. It
e
-

the

f

s

nua-
ion
passing. Every use of tags has its own type to spe
components promised by the tags. For example, e
tag 0 in 0〈v1〉 and 0〈v2〉 promises thatv1 andv2 are
continuations, but the type ofv1 obviously does no
need to be identical to that ofv2. Therefore, the type
of tags must indicate not only the kind of compone
promised by the tags but also the specific type of
components in each context.

Second, it is difficult to design types of marke
In order to classify markers, it is natural to identi
two separate groups of markers since the two kind
demarkers consume different markers. The first gr
consists of markers to be consumed only by retu
demarkers. Some zero-markers will be in the gro
The second group consists of markers to be consu
only by argchk-demarkers. Some other zero-mark
and all one-markers will be in the group. However
is not always possible to determine which group is
signed for all markers. For example, the MPS conv
sion compiles(eα→α

1 eα
2)α into λ(m : τ).❏eα

2❑ 0α〈 · · · 〉
tiated with a non-function type (a function type);
will be in the first (the second) group, respectively
should not be in either group right now, but it will b
in some group afterα is instantiated. If such a zero
marker was decided to have only typeα, it would
be unclear what is the type of the continuation in
marker.

Third, markers have recursive types. In fixf (m).

casem of 0〈k〉 → k(〈f, i〉), for example, the type o
marker m must relate to the type ofk since m

corresponds to 0〈k〉, the type ofk must relate to the
type of f sincef is an argument ofk, and the type
of f must relate to the type of markerm sincem is
an argument off . This circular relationship implie
recursive marker types [2].

3.3. A type system using nonstandard types

The markers, values, representations, and conti
tions, which are generated by compiling an express

K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211 209

(FTV(τ) ⊆ ∆)
∆;Γ
M v : τ

′ (τ ≡ τ ′)

on;
∆
M τ ∆;Γ
M v : τ

∆;Γ
M i : int ∆;Γ
M x : τ (Γ (x) = τ)

∆;Γ
M v1 : τ1 · · · ∆;Γ
M vn : τn
∆;Γ
M 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉 ∆;Γ
M fnt : fnt

∆,α
M τi ∆,α;Γ,f :∀α.(τ) → void, x : τ
M e

∆;Γ
M fix f [α](x : τ).e : ∀α.(τ) → void
(α /∈ ∆ ∧ f, x /∈ Γ)

∆;Γ
M v : ct

∆;Γ
M 0t 〈v〉 : mt

∆;Γ
M v1 : r t1 ∆;Γ
M v2 : mt2

∆;Γ
M 1t1→t2〈v1, v2〉 : m(t1 → t2)

∆;Γ
M v : τ
∆;Γ
M halt[τ]v

∆;Γ
M v : τ ∆;Γ,x : τ
M e

∆;Γ
M let x = v in e
(x /∈ Γ)

∆;Γ
M v : 〈τ1, . . . , τn〉 ∆;Γ,x : τi
M e

∆;Γ
M let x = πi v in e
(x /∈ Γ ∧1�i�n)

∆
F ti ∆;Γ
M v : ∀α.(τ) → void ∆;Γ
M vi : τi [t/α]
∆;Γ
M v[t](v)

∆
M τ ∆;Γ
M v : m t
∆;Γ,x : τ
M x : c t ∆;Γ,x : τ
M e

∆;Γ
M casev of 0〈x : τ 〉 → e
(t ∈ {int,∀α.t ′} ∧ x /∈ Γ)

∆
M τi ∆;Γ
M v : m(t1 → t2)
∆;Γ,x0 : τ0
M e0 ∆;Γ,x1 : τ1, x2 : τ2
M e1

∆;Γ,x0 : τ0
M x0 : c(t1 → t2)
∆;Γ,x1 : τ1, x2 : τ2
M x1 : r t1 ∆;Γ,x1 : τ1, x2 : τ2
M x2 : m t2

∆;Γ
M casev of 0〈x0 : τ0〉 → e0;1〈x1 : τ1, x2 : τ2〉 → e1
(xi /∈ Γ)

Fig. 6. Static semantics ofλM.

of type t through the MPS conversion, are decided to λM. Ther t rule reflects our decision on representati

have nonstandard typesm t , v t , r t , andct .

ed

e
ive

eir
The
for

re-

the representation of integers is a tuple of a marker-
ec-

ir-
.2,

e-
m.
nd
A collection of type equivalence rules is defin
in Fig. 5. If τ1 ≡ τ2 is derivable from the rules,τ1 is
said to be equivalent toτ2. The first three rules are th
reflexive rule, the symmetric rule, and the transit
rule. The next two rules for∀α.(τ) → void and 〈τ 〉
define two compound types as equivalent if th
corresponding component types are all equivalent.
remaining rules define the intended interpretation
all nonstandard types exceptmt and vα, which are
used as they are without any interpretation.

The defined interpretation of nonstandard types
sults from the MPS conversion. Thev int rule, for ex-
ample, reflects that every integer inλF is an integer in
handler function and an integer, as explained in S
tion 2, and its type is〈m int → void, int〉. By the c t

rule, continuations have a function typer t → void, ac-
cepting a represented value of typer t . Formt , no sep-
arate rule is defined. Usingmt as it is defined by the
reflexive rule, enables us to specify implicitly the c
cular relationship in the third problem of Section 3
instead of using standard typesµα.τ [2].

The mechanical verification for equivalence b
tween two types is possible by the following theore
A straightforward algorithm of square complexity a
its proofs could be found in [2].

210 K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211

Theorem 1. There is an algorithm to determine ifτ is
equivalent toτ ′.

pes

nti-

n-

hat

c-
fies

s
r

a-

io-

k-

tively. Note that the same argchk-demarker will re-
ceive both zero-marker and one-marker if they have

n
t is

ds
the

[5]
a

hat

ers.
nd

ht-
use

≡ τ
The static semantics ofλM is shown in Fig. 6.
First, tags 0 and 1 are decided to have generic ty
∀α.〈cα〉 → mα and ∀αβ.〈rα,mβ〉 → m(α → β).
Second, each use of the tags will have its own insta
ated type from the generic types. Third, asubsumption
rule is introduced to smooth the integration of no
standard types with standard types.

The inference rule for a zero-marker specifies t
every zero-marker of typem t must carry a value
of type c t . This marker tag 0 has type〈c t〉 → m t ,
even whent is α as in the second problem of Se
tion 3.2. The inference rule for a one-marker speci
that every one-marker of type m(t1 → t2) must carry
two values of typer t1 andmt2. This marker tag 1 ha
type 〈r t1,mt2〉 → m(t1 → t2). The inference rule fo
a return-demarker allows only markers of typemt for
a non-function typet . The used tag 0 has an equiv
lent type to〈ct〉 → mt for some non-function typet .
Note that a one-marker in a return-demarker will v
late the inference rule due to its marker typemt where
t is a function type. The inference rule for an argch
demarker allows only markers of type m(t1 → t2).
The used tags 0 and 1 have types〈c(t1 → t2)〉 →
m(t1 → t2) and 〈r t1,mt2〉 → m(t1 → t2), respec-

∆;Γ,k : c t
M k : c t
(ct
∆;Γ,k : c t
 k : τ → void
the same type m(t1 → t2), which is a static descriptio
of the dynamic argument status (i.e., if an argumen
available or not) resulting from the two different kin
of markers. By our generic types of tags 0 and 1,
first problem of Section 3.2 is thus solved.

Our subsumption rule allowsv to have typeτ ′
whenever its typeτ is equivalent toτ ′. For example,
in “0〈k : c t〉 → k(v)”, if v has typeτ thenk must have
typeτ → void because of an application. Althoughk

has typec t , this typing will be possible ifct ≡ τ →
void (see Fig. 7).

The remaining inference rules are quite standard
except that a dummy valuefnt is defined as having
corresponding dummy typefnt .

The following theorem (Type Safety) ensures t
well-typed λM programs will not bestuck, where
all terminal terms other than halt[τ]v are considered
stuck, so no one-marker will reach return-demark
A detailed proof by showing Subject Reduction a
Progress could be found in [2].

Theorem 2. If ∅;∅
M e then there is no stucke′ s.t.
e ⇒∗ e′.

Note that Type Safety can be verified by a straig
forward implementation of the inference rules beca

→ void)
· · ·
∆;Γ,k : c t
 v : τ
M M

∆;Γ,k : ct
M k(v)

Fig. 7.

❏xt❑ = λ(m : mt).let f = π1(x) in f (m)

❏it❑ = fix f (m : mt).casem of 0〈k : ct〉 → k(〈f, i〉)
❏(λ(x : t1).ut2)t❑ = fix f (m : mt).casem of

0〈k : ct〉 → k(〈f, fnt 〉)
1〈x : r t1,m : mt2〉 → ❏ut2❑ m

❏(u
t1
1 u

t2
2)t❑ = λ(m : mt).❏u

t2
2 ❑ (0t2〈λ(x2 : r t2).❏u

t1
1 ❑ (1t1〈x2,m〉)〉)

❏(Λα.ut ′)t❑ = fix f (m : mt).casemof 0〈k : c t〉 → k(〈f,λ[α](m′ : mt ′).❏ut ′❑m′〉)
❏(ut1[t2])t❑ = λ(m : mt).❏ut1❑ (0t1〈λ(x : r t1).let y = π2(x) in y[t2](m)〉)
❏ut❑prg = ❏ut❑ (0t 〈λ(x : r t).halt[r t]x〉)

Fig. 8. A typed MPS conversion.

K. Choi, T. Han / Information Processing Letters 87 (2003) 205–211 211

λF : id = (Λα.(λ(x : α).xα)α→α)∀α.α→α

M

ur
λ : id = fix f [α](m : m(α → α)).

casem of
0〈k : c(α → α)〉 → letf ′ = λ(m : m(α → α)).f [α](m) in k(〈f ′, fnα→α〉)
1〈x : rα,m : mα〉 → let y = π1(x) in y(m)

Fig. 9. Compiling an identity function.

they can be defined in a syntax-directed manner and In further work, it would be possible to apply o

their side conditions are verifiable by our algorithm.

is
ed
on
m
ype
ure
].

ter
del
ent

c
s to
ency
nd it

idea on the type system to the existing compilation
are
e

v.

ed
n,

n-
-
ton,

a-
es,

to
ages

ges
unct.
Now, we demonstrate how the MPS conversion
done within our type system by developing a typ
conversion as shown in Fig. 8. A simple compilati
example is shown in Fig. 9. The following theore
ensures that the typed conversion preserves T
Correctness. The proof is by induction on the struct
of e in λF. A detailed proof could be also found in [2

Theorem 3. If ∅;∅
F e : t then∅;∅
M ❏e❑prg.

4. Conclusion

We developed a type system for the push-en
model. For a compilation method based on the mo
using states 0 and 1 to indicate dynamic argum
status, we designed generic types∀α.〈cα〉 → mα and
∀αβ.〈rα,mβ〉 → m(α → β) to describe the dynami
argument status. By assigning the generic type
the states, our type system guarantees consist
between states and dynamic argument status; a
has a type checking algorithm.
methods based on the push-enter model. We
currently working on a typed compilation for th
ZINC machine.

References

[1] A.W. Appel, Compiling with Continuations, Cambridge Uni
Press, Cambridge, MA, 1992.

[2] K. Choi, A type system for the push-enter model, Revis
Report of CS-TR-2002-175, Dept. of EE&CS, KAIST, Daejeo
Korea, February 2003.

[3] R. Harper, M. Lillibridge, Explicit polymorphism and CPS co
version, in: The 20th Annual ACM SIGPLAN–SIGACT Sym
posium on Principles of Programming Languages, Charles
SC, January 1993, pp. 206–219.

[4] X. Leroy, The ZINC experiment: An economical implement
tion of the ML language, Technical Report 117, INRIA, Renn
France, 1988.

[5] G. Morrisett, D. Walker, K. Crary, N. Glew, From system F
typed assembly language, ACM Trans. Programm. Langu
Systems 21 (3) (1999) 528–569.

[6] S.L. Peyton Jones, Implementing lazy functional langua
on stock hardware: the spineless tagless G-machine, J. F
Programm. 2 (2) (1992) 127–202.

