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1. Introduction apply model (e.g., one for CPS conversion [3]) never
consider such a dynamic property of the push-enter
Compiling with typed intermediate languages has model. Even though the push-enter model has its own
many advantages including that the properties of tra- advantages [4,6], all typed compilation approaches are
ditional compilation methods can be specified by types obliged to use only the eval-apply model (e.g., as in a
and they can be verified automatically in compile-time type-preserving compilation [5]) in compiling higher-
[5]. . . order functions, which are an indispensable language
The push-enter model is an important class of com- feature
pilation methods for higher-order functions, as has At ) tem for th h-ent del should de-
been demonstrated by the ZINC machine (which is ; ype system _Or € push-enter modet shou e_
used in the OCaml compiler) [4, §2.2] and the STG scribe the dynamlc arrangement of .ar_gument_s stati-
machine (which is used in the Glasgow Haskell com- Cally. To design such a type system, it is most impor-
piler) [6, §3.2]. The compilation methods dynamically tant to design the type of states; all compilation meth-
arrange arguments passed among functions, which areods based on the model use separate states in runtime
called with an arbitrary number of arguments accord- to indicate dynamic argument status. The type must
ing to the feature of higher-order functions. The eval- specify the exact argument status that each state indi-
apply model is the other class of compilation methods cates.
that statically arranges those arguments. In this paper, we first develop a simple compilation
As far as we know, there is no type system for the method based on the push-enter model in Section 2.
push-enter model. Existing type systems for the eval- The compilation method uses its own states to indicate
dynamic argument status. In Section 3, we design
o This work was supported by the Korea Science and Engineer- generic types for the states, and we develop a type
ing Foundation (KOSEF) through the Advanced Information Tech- system on the basis of these generic types. We then
nology Research Center (AITrc). demonstrate how the compilation method is done
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2. Compiling higher-order functionsin the If so, an applying operation with the argument will be
push-enter model implicitly done through the corresponding alternative
of the demarker. As a result, the MPS conversion
A compilation method based on the push-enter avoids the cost of building closures for the function
model is developed as shown in Fig. 1; we call this value, while the CPS conversion suffers from the cost.
MPS conversioriThe other compilation method based It will build closures only when no argument turns out
on the eval-apply model, CPS conversion [1], is also to be available. In general, the push-enter model has
shown for comparison. The purpose of both conver- this advantage over the eval-apply model [4,6].
sions here is to compile away the feature of higher-  For an application, the CPS conversion compiles it
order functions in source expressions; after conver- for an applying operation to be done explicitly after the
sion, the feature will not appear in target expressions evaluation of the function and argument expressions.
any more. The MPS conversion compiles the argument expres-
Markers and demarkers, which are our primitives sion with a zero-marker because the expression is to be
for the push-enter model, use tags 0 and 1 as statesevaluated without any other argument, and it compiles
indicating dynamic argument status; the tag O indi- the function expression with a one-marker because an
cates that no argument is available and the tag 1 argument is now available from the argument expres-

indicates that one argument is available. z&ro- sion.
marker(0O(v)) carries a continuation. A one-marker For a variable, both non-function and function
(1{v, V")) carries an argumentand another marker. values can be bound to the same variable. The CPS

A return-demarkefcasev of O(x) — ¢) is used to re- conversion compiles a variable to be returned because
turn values to a continuatian. An argchk-demarker  both kinds of bound values are compiled uniformly
(casev of O(x) — eg; 1{x, x") — e1) is used to check  to be returned. The MPS conversion compiles them
the existence of an argument and then, if there is any, differently as explained, so care must be taken to
to take it. compile a variable uniformly. In the MPS conversion,

For a non-function value like integers, both conver- every value is uniformly represented by a marker-
sions compile it to be returned in the same way. The handler function and the value itself. For a simple
MPS conversion uses a return-demarker for compiling presentation, a dummy valuénj is used to fill the
non-function values. second field in the representation of function values

For a function value, the CPS conversion compiles since the field is useless; such an untidy thing could
it to be returned in the same way as for a non-function be eliminated by using record types and subtyping
value. The MPS conversion compiles it differently on them. Based on this representation decision, a
because, in the push-enter model, the existence ofvariable is compiled uniformly to select a marker-
an argument, i.e., the tag of markers, determines handler function from a pair bound to the variable and
whether it is returned or not. An argchk-demarker is to invoke the function with a marker. This allows a
used for compiling function values to examine if an faithful applying operation with a function bound to a
argument is available (i.e., if the tag of markers is 1). variable in a tail position.

MPS (push-enter) CPS (eval-apply)
[x] = am.let f =m1(x)in f(m) [x] = Ak.k(x)
[ = fix f(m).casem of [ = Ak.k(@)
0k) — k((f.i)) [rx.e] = rk.k(h(x,k').[e] k')
[rx.e] = fix f(m).casen of [e1 e2] = Ak.[e1] k1 where
O(k) — k({f, fn)) k1= 2x1.[e2] k2
Lx,m'y — [e] m’ kp = Axp.x1(x2, k)
[e1 e2] = Am.[e2] O(k) where

k = Ax2.[e1] L(xo, m)

Fig. 1. Two compilation methods for higher-order functions.
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3. A typesystem for the push-enter model
3.1. Source and target languages

The source languagg™ is a higher-order, typed,
and call-by-value language in a manner similar to that
in [5]:

types to=alint|t1 — 2| Va.t

annotated termse ::= u!

terms ur=x|i|Ax:t)el|erez
| Aa.e | e[t]

type contexts A:=oaq,...,q,

value contexts I’ i=x1:11,...,%, Iy

The static semantics of” is shown in Fig. 2

and it consists of the standard inference rules. In the

judgmentsA; I'Hce:t, A is a context that contains
the free type variables af', e, andz; I' is a context
that assigns types to the free variablespénd: is
the type ofe. The judgmentA . ¢ asserts that type
has no free type variable undgr. An empty context
is denoted by.

The target languagg” is apseudo first-ordeand

typed language [1,5] with markers and demarkers (see

Fig. 3). Each tag in markers has an annotatiom

207

syntax, a sequence of syntactic objegtss denoted
by E.

The dynamic semantics &f' in Fig. 4 is defined
as a relation of terms=£), particularly to show the
behavior of markers and demarkers.A'h, functions
do not return values, so function calls are just jumps;
“— void” suggests this fact. If control is to be
returned to the caller, the caller must pass the callee
a continuation function for it to invoke. Execution is
completed by the construct hialtv, giving a result
value v of type t. The construct fix abstracts both
type and value variables, and the correspondfiagd
— types are combined. Latéfa](x : T).e, A(X : T).e,
and (T) — void are used whery or @ is unused in
fix fl&](x: T).e andVa.(T) — void.

The static semantics of* will be shown later in
Fig. 6. It has quite similar judgments to those in the
static semantics of", except that the new judgment
A; I' =, e states no return type sineenever returns
values.

3.2. Typing markers and demarkers

Let us explain three typing problems. First, it is
most important to determine the types of tags 0 and

AT et
— (FTV() C A) Fu

Abet A; T beul ot

Abety Ay x it beetn

(x¢I

AT e xc:

I'x)y=t) —————
t( x) ) A; T'Feicint

A;Tbeerity—>tp A;Tbeenitg

AT A(xity).eity —> to

Aya; lCFeect

(a¢ Q)

A;TFperenitn

Abet AT Fee: Vot

A; T Axe :Va.t

A; Theelt]: [t /al

Fig. 2. Static semantics of .

types T u=int | V&.(T) — void| (1, .
values vi=x|i|fix fl@l(x:7T).e]| (vy,.
terms

., Th) | me|velre|ce | fnf
vp) | O (u) [ 2 (ug, vo) |

ex=letx=vine|letx =m;(v)ine|v[](v) | halfzr]v
| casevof Olk: ) —> ¢

| casev of O(k: ) — eg; Lx : T/, m: 1"y —> €1

type contexts A ::=aq,...,ap

value contextsl” ::=x1:71,...,Xp : T

Fig. 3. Target languagge".
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letx=vine = el[v/x]
letx =m;({...,v;,...))Ine = elv; /x]
(fix F[@)(F : T).0)[F1(D) = e[i/@(fix f...)/f, 5/%]
case O(v) of O(k : /) — ¢ = el[v/k]

case O(v) of Ok : T/) = eg; Lix : 7/, m: 1"y —>e1 = eg[v/k]
case L(v,v") of O(k : /) — eq; Lx : T, m : Ty — e1 = eq[v/x, V' /m]

Fig. 4. Dynamic semantics of.

=T TI=T72 T2=13

T=T TI=1 1 =13
TlETi e TH=T,
V(Y.(‘[l,...,‘[n)—)VOidEV(Y.(‘L’i,...,‘L’,{,)—)VOid
=T ... W=T,
(rl,...,rn)z(ti,...,r,é)

mr=rt

v(int) =int v(Ya.r) =Va.(t — void) Vv(t1 — tp) =fnf1712
mr=t1 Vi=r1p =t
rt=(ry — void, o) ¢t =1 — void

Fig. 5. Type equivalence rules.

1 because they substantially affect typing markers and using a zero-marker. The zero-marker may reach a

demarkers, which use the tags to control argument return-demarker (an argchk-demarkeryifis instan-

passing. Every use of tags has its own type to specify tiated with a non-function type (a function type); it

components promised by the tags. For example, eachwill be in the first (the second) group, respectively. It

tag 0 in Qui) and Quz) promises thav; andv, are should not be in either group right now, but it will be

continuations, but the type af obviously does not  in some group aftew is instantiated. If such a zero-

need to be identical to that @. Therefore, the types ~ marker was decided to have only type it would

of tags must indicate not only the kind of components be unclear what is the type of the continuation in the

promised by the tags but also the specific type of the marker.

components in each context. Third, markers have recursive types. In fign).
Second, it is difficult to design types of markers. casemn of 0(k) — k((f,i)), for example, the type of

In order to classify markers, it is natural to identify marker m must relate to the type ok since m

two separate groups of markers since the two kinds of corresponds to @), the type ofk must relate to the

demarkers consume different markers. The first group type of f since f is an argument ok, and the type

consists of markers to be consumed only by return- of f must relate to the type of marker sincem is

demarkers. Some zero-markers will be in the group. @n argument off. This circular relationship implies

The second group consists of markers to be consumedrecursive marker types [2].

only by argchk-demarkers. Some other zero-markers

and all one-markers will be in the group. However, it 3.3. Atype system using nonstandard types

is not always possible to determine which group is as-

signed for all markers. For example, the MPS conver- ~ The markers, values, representations, and continua-

sion compilege§ ™% e5)* into A(m : 7).[eg] O%(- - -) tions, which are generated by compiling an expression
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A TEyv:t
FTV(r)C A) o MU T
AI—MI( s )A;I"I—Mv:r/(t ©)
I =
ATFe it AT Fgrs T®=9

A;TFyvrity - AT Fyop ity
ATy (1, .. 0p) (T, .., Tn) A Ty fnf o fnf

Adbyt A L, f:Va.(t) > void,x:Thye
A; Ty fix fl@](x:T).e:Va.(t) — void

@gANf,X¢T)

A; My v:ct ATy vpirty ATy vp:miep
A; Ty O vy imre A Ty 127 2(vg, v2) : Mt — 1)

A;TMEyvet A;TNFyvit A, x:thye
A; T =y halffz]v A;TMFyletx=vine

(x¢rl)

AT byvi(ty,...,) A x:tibywe

: (x ¢ TAL<i<n)
A;TEyletx=mivine

Abet; A; T By v:Va.(t) — void A; I 'y v; 1t /a]
A; Ty v[](D)

Abuyt A; T FHyv:mt
Ay x:thyx:Ct Ay, x:thye

te{int,Va.t'YAx ¢l
A;TN'ycasevof Ox : 1) > e (tet aryAx ¢l

Abut A;TFEyvim(tg — 1)
A;Tyxg:tobweg A; I x1:11,x2: T2 eq
A; Ty xg:tohwxp:C(ty — t2)
ATy x1:11,x0:Tobux ity A I, x1:11,x2: T2y X2 Mip (x;
A; Ty casev of O(xqg : 70) — eg; L{x1: 71, X2 :12) = €1 !

¢rI)

Fig. 6. Static semantics of'.

of typet through the MPS conversion, are decided to A™. Ther¢ rule reflects our decision on representation;

have nonstandard typest, v, r¢, andcs. the representation of integers is a tuple of a marker-
A collection of type equivalence rules is defined handler function and an integer, as explained in Sec-
in Fig. 5. If 11 = 12 is derivable from the rules; is tion 2, and its type igmint — void, int). By thecs

said to be equivalent tep. The first three rules are the rule, continuations have a function type— void, ac-
reflexive rule, the symmetric rule, and the transitive cepting a represented value of typeForm¢, no sep-

ruIe_. The next two rules fova.(7) — qu and_(f) . arate rule is defined. Using: as it is defined by the
define two compound types as equivalent if their . e .
reflexive rule, enables us to specify implicitly the cir-

corresponding componenttypes are all equivalent. The | lationshin in the third bl f .
remaining rules define the intended interpretation for _cu ar relationship in the third problem of Section 3.2,

all nonstandard types excepts andva, which are  nstead of using standard types.t [2].

used as they are without any interpretation. The mechanical verification for equivalence be-
The defined interpretation of nonstandard types re- tween two types is possible by the following theorem.
sults from the MPS conversion. Thent rule, for ex- A straightforward algorithm of square complexity and

ample, reflects that every integerihnis an integer in its proofs could be found in [2].



210 K. Choi, T. Han / Information Processing Letters 87 (2003) 205-211

Theorem 1. There is an algorithm to determineifis tively. Note that the same argchk-demarker will re-
equivalent tor’. ceive both zero-marker and one-marker if they have
the same type rir1 — t2), which is a static description
of the dynamic argument status (i.e., if an argument is
available or not) resulting from the two different kinds
of markers. By our generic types of tags 0 and 1, the
first problem of Section 3.2 is thus solved.

Our subsumption rule allows to have typet’
whenever its type is equivalent tor’. For example,
in“0(k :ct) — k(v)", if v has typer thenk must have
type t — void because of an application. Although
has typect, this typing will be possible itt =t —
void (see Fig. 7).

The remaining inference rules are quite standard [5]
except that a dummy value’ is defined as having a
corresponding dummy tyde’.

The following theorem (Type Safety) ensures that
well-typed A¥ programs will not bestuck where
all terminal terms other than hgtffv are considered

The static semantics of" is shown in Fig. 6.
First, tags 0 and 1 are decided to have generic types
Va.(Ca) - ma and VaB.(re,mgB) - m(a — B).
Second, each use of the tags will have its own instanti-
ated type from the generic types. Thirdsubsumption
rule is introduced to smooth the integration of non-
standard types with standard types.

The inference rule for a zero-marker specifies that
every zero-marker of typen: must carry a value
of type ct. This marker tag O has typgt) — m¢,
even whery is o as in the second problem of Sec-
tion 3.2. The inference rule for a one-marker specifies
that every one-marker of type (n — r2) must carry
two values of type r; andmz,. This marker tag 1 has
type (rt1, ms) — m(t1 — r2). The inference rule for

a return-demarker allows only markers of type for  gy,ck, so no one-marker will reach return-demarkers.
a non-function type. The used tag 0 has an equiva- A detailed proof by showing Subject Reduction and
lent type to(ct) — m¢ for some non-function type Progress could be found in [2].

Note that a one-marker in a return-demarker will vio-

late the inference rule due to its marker typewhere Theorem 2. If @: & -, e then there is no stuck s.t.

t is a function type. The inference rule for an argchk- o, —* ¢/,

demarker allows only markers of type (m — t2).

The used tags 0 and 1 have typegt — 12)) — Note that Type Safety can be verified by a straight-
m(t1 — t2) and (rtg, me) — Mty — t2), respec- forward implementation of the inference rules because

A; T k:Ctbyk:ct ct void)
- =7 —>
AT k:Ctbyk:t— void Ay k:Cthbyv:t
A, T k:Ct by k(v)

Fig. 7.
[x'] = A(m:mp).let f =mw1(x)in f(m)
[i'] = fix f(m : m¢).casem of O(k : ct) — k((f,i))

[A(x : 11).u™)!] = fix f(m : mt).casem of
O(k : ct) — k({f, fn’))
Ux :rtg, m:mep) — [u2] m

[uF u)'] = A(m:mo).[u2] O2(n(xp: 1) [uf] (A (xp, m))))

[[(Aa.u’/)’ﬂ = fix f(m : m¢).casen of Ok : ct) — k({f, A[a](m’ : mt/).[[u’/ﬂ m'))
[@[t2D)] = A(m:me). [u'r] (O (A(x :rtg).lety = mo(x) in y[t2](m)))
[[u’]]prg = [u'] (O (A(x :r).halfre]x))

Fig. 8. A typed MPS conversion.
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AF1id = (Ao (M (x : ) x®) @) Yra—a
M eid =fix fla](m:m(a — a)).
casem of
Ok : c(a — a)) — let f/ = A(m : m(a = @)). flal(m)in k((f, In* %)
Lx:ra,m:ma) — lety =m1(x) in y(m)

Fig. 9. Compiling an identity function.

they can be defined in a syntax-directed manner and In further work, it would be possible to apply our
their side conditions are verifiable by our algorithm.  idea on the type system to the existing compilation
Now, we demonstrate how the MPS conversion is methods based on the push-enter model. We are

done within our type system by developing a typed currently working on a typed compilation for the
conversion as shown in Fig. 8. A simple compilation ZINC machine.
example is shown in Fig. 9. The following theorem
ensures that the typed conversion preserves Type
Correctness. The proofis by induction on the structure References
of e in AF. A detailed proof could be also found in [2].
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